

Stencil

Metho 000 Numerical Stu

Performano

Mantle Convectio

Terra-Neo

A two-scale approach for efficient on-the-fly operator assembly on curved geometries

Simon Bauer¹ Markus Huber² Marcus Mohr¹ Ulrich Rüde³ Jens Weismüller^{1,5} Markus Wittmann⁴ Barbara Wohlmuth²

¹Dept. of Earth and Environmental Sciences, Ludwig-Maximilians-Universität München

²Institute for Numerical Mathematics (M2), Technische Universität München

³Computer Science 10, FAU Erlangen-Nürnberg

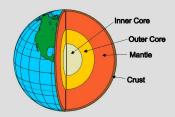
⁴Erlangen Regional Computing Centre (RRZE), FAU Erlangen-Nürnberg

⁵Leibniz Supercomputing Centre (LRZ)

SPPEXA Annual Plenary Meeting 21.03.2017

Bauer et al. Terra-Neo 1/25

Geophysicist



Earth Mantle represented as a thick spherical shell

Bauer et al. Terra-Neo 2/25

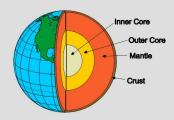
Stencil:

Method 000 Numerical Stud

Performanc

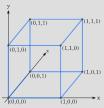
Mantle Convection

Geophysicist



Earth Mantle represented as a thick spherical shell

Mathematician/Computer Scientist



+ well-suited for matrix-free FE implementations

+ regular grid \rightarrow constant access patterns

Bauer et al. Terra-Neo 2/2:

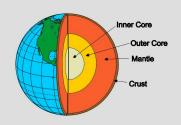
Stencil:

Method 000 Numerical Stud

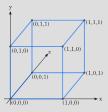
Performanc

Mantle Convection

Geophysicist



Mathematician/Computer Scientist



Earth Mantle represented as a thick spherical shell

+ well-suited for matrix-free FE implementations

+ regular grid \rightarrow constant access patterns

Bauer et al. Terra-Neo 2/2:

Stencil 000 Metho 000 Numerical 00000 Performan

Mantle Convection

Hierarchical Hybrid Grids (HHG)

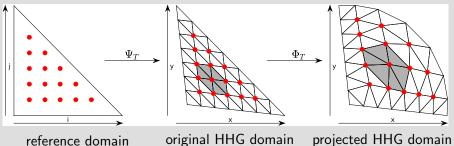
Hybrid approach

- initial coarse unstructured mesh (macro elements)
- regular refinement of macro elements
- constant access patterns (FE stencils) within each macro element for the refined grids
- matrix-free implementation
- compute stencils on-the-fly (only ONCE per macro element), reduces memory traffic
- excellent parallel scalability and node performance [Gmeiner et al., 2015]

Projection of fine grid nodes

- accurate representation of geometry on all levels
- FE stencils are not constant within macro elements
- need to assemble stencil for EACH fine grid node \rightarrow SLOW

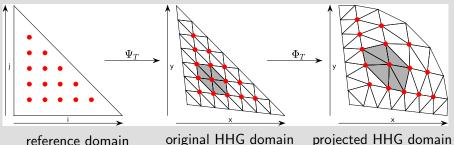
Sequence of Mappings (2D sketch)



original HHG domain

Bauer et al. Terra-Neo 4/25 0000

Sequence of Mappings (2D sketch)



original HHG domain

Can we get the performance of the original HHG also on the projected domain?

Terra-Neo Bauer et al. 4/25

Stenci

Metho 000 Numerical Stud

Performan

Mantle Convection

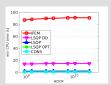
Outline

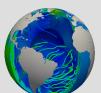
1) Introduce novel approach

2) Numerical study and performance results

3) Geophysical application

 $-\Delta u = f$





Bauer et al. Terra-Neo 5/25

Stencils •00

Method 000 Numerical Study

Performano

Mantle Convection

Novel Approach for Efficient Stencil Assembly on Curved Geometries

Bauer et al. Terra-Neo 6/25

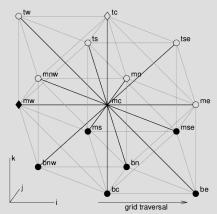
Stencil

Method 000 Numerical Stud

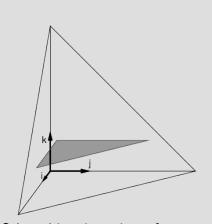
Performano

Mantle Convection

HHG Stencil Layout



Layout of the 15pt stencil in HHG



Selected interior points of a macro tetrahedron in 3D reference domain

Bauer et al. Terra-Neo 7/2

Stencils

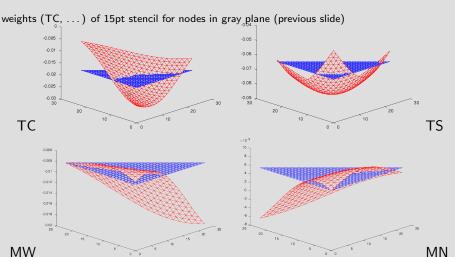
Method

Numerical S

Performan

Mantle Convectio

Original (blue) vs. projected (red) stencil weights



Bauer et al. Terra-Neo 8/25

Stencil

Metho

Numerical Stu

Performan

Mantle Convection

Novel Approach

Idea: Approximate stencils by low order polynomials

Replace expensive stencil assembly via evaluation of local element matrices by low-cost approximation

- Employ quadratic or cubic (or even higher order) polynomials
- Pre-compute polynomial coefficients in setup phase and store them
- Define one polynomial for each stencil weight at each level and for each macro element
- Fit polynomial coefficients by interpolation (IPOLY) or least-squares approach (LSQP)

Bauer et al. Terra-Neo 9/25

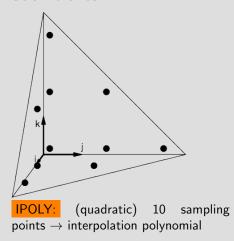
ils N

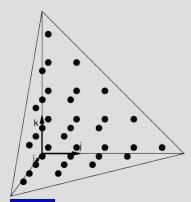
Method 0•0 Numerical Stud

Performano

Mantle Convection

Sampling Points for Determination of Polynomial Coefficients





LSQP: employ more sampling points and solve least-squares problem

Bauer et al. Terra-Neo 10/25

itencils

Method

Numerical Stu

Performan

Mantle Convecti

Polynomial Evaluation

1D: a quadratic polynomial $p_i := p(z_i) = a_2 z_i^2 + a_1 z_i + a_0$ can be evaluated incrementally with only two flops

$$p_{i+1} = p_i + \delta p_i, \quad \delta p_{i+1} = \delta p_i + \delta k$$

where

$$\delta p(z_i) := p'(z_i)h + \frac{p''(z_i)}{2}h^2$$
$$\delta k := 2ah^2$$

Polynomial degree q > 2: Formula can be generalized to higher polynomial degrees (based on Taylor series expansion)

3D: ansatz transfers directly to higher dimensions

Bauer et al. Terra-Neo 11/25

tencils

Method 000 Numerical Study

Performano 00 Mantle Convection

Numerical Study and Performance Results

Bauer et al. Terra-Neo 12/25

Stencil

Method

Numerical Study

Performan

Mantle Convectio

Model Problem

$$-\Delta u = f$$
 in Ω , $u = 0$ on $\partial \Omega$

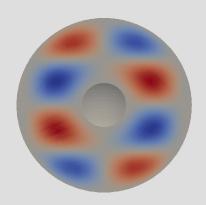
Exact solution:

$$u(x, y, z) = g(x, y, z) \cdot h(x, y, z)$$

with

$$g(x, y, z) = (r - r_{\min})(r - r_{\max})$$

$$h(x, y, z) = \sin(10x)\sin(4y)\sin(7z)$$



Bauer et al. Terra-Neo 13/25

- Employ geometric multigrid solver with V(3,3)-cycle and Gauss-Seidel (GS) smoother
- Test different numerical strategies:

CONS	original HHG (non-projected)
IFEM	projected HHG (assemble FE stencils exactly)
IPOLY	employ interpolation polynomial(quadratic)
LSQP	employ approximation polynomial (quadratic)
LSQP (q=3)	employ approximation polynomial (cubic)
DD	use IFEM for residual and
(Double Discretization)	IPOLY/LSQP for the smoother

Bauer et al. Terra-Neo 14/25

Stenci

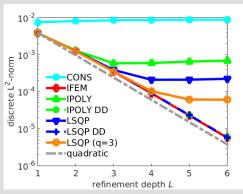
Method

Numerical Study

Performano

Mantle Convection

Numerical Experiments (2/2)



Discretization error for different levels of refinement

- LSQP better than IPOLY, but both deteriorate after some levels
- cubic more accurate than quadratic polynomials (but more expensive)
- DD (Double Discretization) schemes are exact for all levels
- critical level L_C depends on macro element size H, for smaller H we get larger L_C
- Disc. error is in $\mathcal{O}(h^2) + \mathcal{O}(H^{q+1})$ g: polynomial degree

Bauer et al. Terra-Neo 15/2

Numerical Study Performance Mantle Convection

Numerical Experiments - Take Home Message

Disc. error is in
$$O(h^2) + O(H^{q+1})$$

Task: Identify (h,H)-parameter regime such that " $\mathcal{O}(H^{q+1}) \leq \mathcal{O}(h^2)$ " **Large Scale**: $\mathcal{O}(10^4)$ MPI-processes \rightarrow lower bound for number of macro elements \rightarrow small $H \rightarrow \mathcal{O}(H^{q+1})$ is also small

> **LSQP** (q=2) is accurate for at least 6 levels of refinement

This allows a global resolution of the Earth mantle of 1km.

Bauer et al. Terra-Neo 16/25

Stencil

Metho

Numerical S

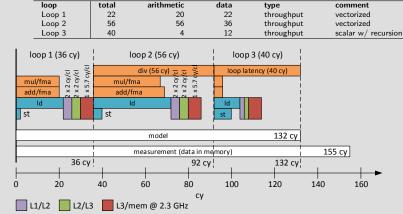
Performance

Mantle Convection

Node Level Optimization

Execution-Cache-Memory (ECM) model (single core)

Reported cycles from IACA for the 3 loops normalized to 8 stencil updates. (maximum values of each port of a certain category)



itencils

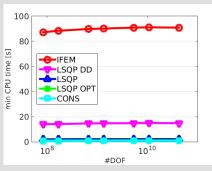
hod

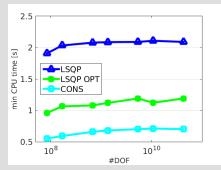
Numerical Stud

Performance

Mantle Convectio

Weak Scaling on SuperMUC Phase 2





Minimal CPU time [s] for one V(3,3)-cycle. 16 macro elements are assigned per core with $3.3 \cdot 10^5$ DOFs per macro element.

Bauer et al. Terra-Neo 18/25

ncils I

Method 000 Numerical Study

Performance 00 Mantle Convection

Geophysical Application

Bauer et al. Terra-Neo 19/25

Stencil

Method

Numerical Stud

Performance

Mantle Convection

Mantle Convection: Physical Model

Conservation of momentum, mass and energy:

$$\operatorname{div} \boldsymbol{\sigma} + \varrho \mathbf{g} = 0 \tag{1a}$$

$$\partial_t \varrho + \operatorname{div}(\varrho \mathbf{u}) = 0 \tag{1b}$$

$$\partial_t(\varrho e) + \operatorname{div}(\varrho e \mathbf{u}) + \operatorname{div} \mathbf{q} - H - \boldsymbol{\sigma} : \dot{\boldsymbol{\varepsilon}} = 0$$
 (1c)

with

$$\sigma = 2\mu \left(\dot{\boldsymbol{\varepsilon}} - \frac{\operatorname{tr} \dot{\boldsymbol{\varepsilon}}}{3} \, \mathbf{I} \right) - p \mathbf{I} \; , \quad \dot{\boldsymbol{\varepsilon}} = \frac{1}{2} \left(\nabla \mathbf{u} + (\nabla \mathbf{u})^T \right)$$

and an equation of state $\varrho = \varrho(p, T)$.

 φ density g gravitational a ε rate of strain a q heat flux per a 	ensor <i>T</i>	velocity dynamic viscosity temperature heat production rate	р σ е	pressure Cauchy stress tensor internal energy
---	----------------	--	--------------------	---

Bauer et al. Terra-Neo 20/2

Mantle Convection: Generalised Stokes System

Re-casting in terms of key quantities velocity, pressure and temperature, we get a generalised Stokes problem for the quasi-stationary flow (1a),(1b) (with an elliptic *viscous operator* L)

$$L(\mathbf{u}; \mu) - \nabla p = \mathbf{F}(T)$$
$$div(\mathbf{u}) = 0$$

$$\mu = \mu(\mathbf{x}, \mathcal{T}, \mathbf{u})$$

coupled to the energy equation (1c)

$$\partial_t T + \mathbf{u} \cdot \nabla T + \operatorname{div}(\kappa \nabla T) - \frac{1}{c_p \varrho} (H - \boldsymbol{\sigma} : \dot{\boldsymbol{\varepsilon}}) = 0$$

only via the buoyancy term F(T).

c _p specific heat capacity	κ	heat conductivity
---------------------------------------	---	-------------------

Bauer et al. Terra-Neo 21/2

Stencil

Method 000 Numerical Stud

Performano

Mantle Convection

LSQP for Stokes System

Mixed Finite Element discretisation:

$$\begin{bmatrix} \mathbf{A}(\mu) & \mathbf{B}^T \\ \mathbf{B} & -\mathbf{C} \end{bmatrix} \begin{bmatrix} u \\ q \end{bmatrix} = \begin{bmatrix} f \\ g \end{bmatrix}$$

Challenges:

- 1) Curved geometry \rightarrow employ LSQP approach
 - lacktriangleright system of PDEs ightarrow approximate stencils of each operator block individually with a quadratic polynomial
- 2) How do we deal with non-constant μ ?

Bauer et al. Terra-Neo 22/25

Stencil

Metho

Numerical Stud

Performano

Mantle Convection

LSQP with Variable Coefficients

Remember: stencil weight $a_{k,m}^{I,J}$ is computed via:

$$a_{k,m}^{I,J} = \sum_{t \in \mathcal{N}(I) \cap \mathcal{N}(J)} \bar{\mu}_t E_t^{I,J}$$
 (2)

- Approximate stencil weight including μ ("classical" LSQP approach) \rightarrow only for "sufficiently smooth" μ
- Approximate local element matrices \rightarrow replace expensive $E_t^{I,J}$ with polynomial approximation (LSQP LocEl)
 - + works for general μ
 - more expensive, but still much faster than computation of $E_t^{I,J}$

I, J k, m	node indices operator component, $1 \leqslant k, m \leqslant 3$	$\mathcal{N}(I)$ $E_t^{I,J}$	neighbourhood of node <i>I</i> contribution of local element matrix
t	local element	$\bar{\mu}_t$	averaged viscosity on element t

Bauer et al. Terra-Neo 23/2

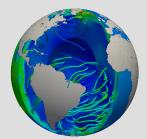
Stencil

Method 000 Numerical Stud

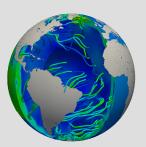
Performance

Mantle Convection 00000●

Application - Velocity Streamlines



classic FE assembly



LSQP LocEl

Viscosity model [Davies et al. 2012] with jump at $d_a = 660/6371$

$$\mu(\mathbf{x},T) = \exp\left(4.61\frac{1-\|\mathbf{x}\|_2}{1-r_{\rm cmb}} - 2.99\,T\right) \begin{cases} 1/10\cdot 6.371^3 d_a^3 & \text{for } \|\mathbf{x}\|_2 > 1-d_a, \\ 1 & \text{else}. \end{cases}$$

Present day temperature field T [Grand et. al 1997, Stixrude and Lithgow-Bertelloni 2005], plate velocities [GPlates] on surface and free-slip BC's on core-mantle boundary (cmb)

Bauer et al. Terra-Neo 24/25

encils

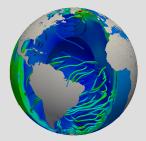
Method

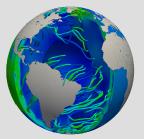
Numerical Stud

Performanc

Mantle Convection ○○○○○●

Application - Velocity Streamlines





classic FE assembly

LSQP LocEl

Viscosity model [Davies et al. 2012] with jump at $d_a=660/6371$

$$\mu(\mathbf{x},T) = \exp\left(4.61\frac{1-\|\mathbf{x}\|_2}{1-r_{\rm cmb}} - 2.99\,T\right) \begin{cases} 1/10\cdot 6.371^3 d_a^3 & \text{for } \|\mathbf{x}\|_2 > 1-d_a, \\ 1 & \text{else}. \end{cases}$$

Present day temperature field T [Grand et. al 1997, Stixrude and Lithgow-Bertelloni 2005], plate velocities [GPlates] on surface and free-slip BC's on core-mantle boundary (cmb)

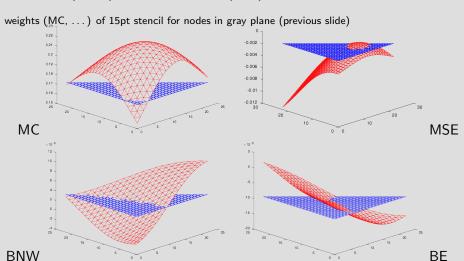
Bauer et al. Terra-Neo 24/25

Thank you for your attention

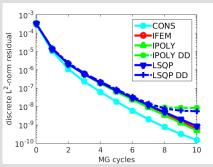
Bauer et al. Terra-Neo 25/25

Bauer et al. Terra-Neo 26/25

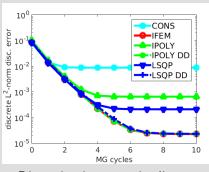
Original (blue) vs. projected (red) stencil weights



Numerical Experiments



Residual in discrete L_2 -norm



Discretization error in discrete L_2 -norm