EXA-DUNE: Flexible PDE Solvers, Numerical Methods and Applications

P. Bastian, C. Engwer, D. Göddeke, O. Iliev, O. Ippisch, M. Ohlberger, S. Turek

Munich, March 20, 2017

EXA-DUNE Project Goals

Develop open-source reusable, efficient, scalable and resilient components for the numerical solution of PDEs

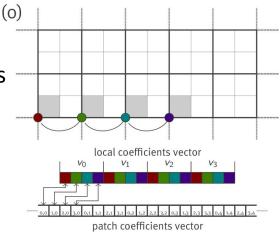
Based on DUNE (Freiburg, Berlin, Heidelberg, Münster,...)

- Flexible software framework, 100+ man-years, GPL-license
- Dimension-independent, different mesh types, hierarchical local refinement, separate mesh/linear algebra, MP parallel
- Efficiency: code generation / static polymorphism in C++
- Applications: Navier-Stokes, Euler Maxwell, elasticity,...

And FEAST (Dortmund)

- Hardware oriented numeric
- Multicore/GPGPU/MPI implementation

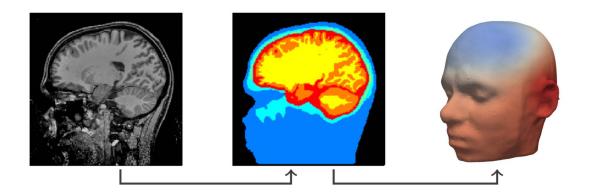
Applications: (Multiphase) flow in porous media


Main Topics covered in 2016

- Enhanced Node-level performance
 - Vectorisation for low order schemes
 - Application of sum-factorization to more complex problems
 - Combination of matrix-free and matrix-based iterative solvers
 - Hardware-aware preconditioning
- Resiliency
 - Fault tolerant multigrid
- Applications:
 - EEG inversion
 - Miscible Displacement
 - Adaptive Multiscale Methods
 - Multilevel Monte-Carlo
 - Land-Surface Model

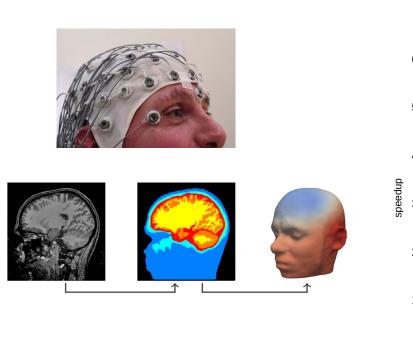
SIMD for low-order Schemes: Vectorisation over multiple Elements

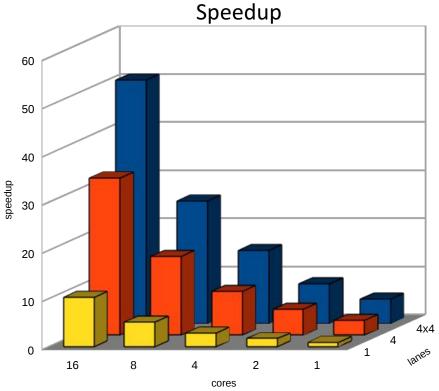
- Laplace-Equation
- Matrix assembly for conforming FEM,
 Q₁ Lagrange basis, patch grid
- Intel Haswell E5-2698v3, 2.3 GHz, 16 cores, AVX2, 4 lanes
- Advertised 30 GFLOPs/sec per core
- Advertised 480 GFLOPs/sec total (→ % peak)
- Peak without FMA: 15 GFLOPs/sec per core (→ % avail)
- Timing for Matrix Assembly:



	SIMD	lanes	thread	runtime	GFLOP/sec	% avail	% peak
_	none	1	1	38.6 s	3.0	19.2	0.6
	none	1	16	2.5 s	47.3	19.4	9.7
	AVX	4	1	16.6 s	5.0	32.0	1.0
	AVX	4	16	1.1 s	72.9	30.0	15.0

SIMD for low-order Schemes: Vectorisation over multiple Problems

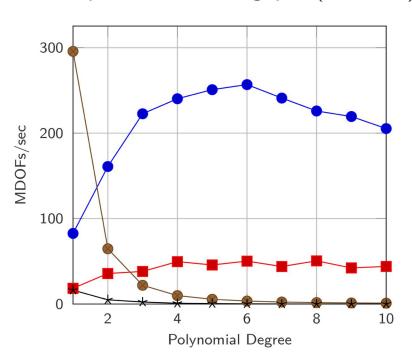




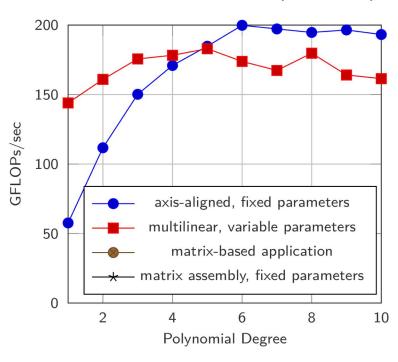
- EEG measurements, 200+ electrodes
- Goal: reconstruct brain activity from surface potential measurements
- For each electrode solve (stationary) adjoint problem to obtain sensitivity, requires solution of linear equation system with identical Matrix A
- Vectorise over several adjoint problems, solve multiple linear equation systems simultaneously with CG solver and AMG preconditioner

SIMD for low-order Schemes: Vectorisation over multiple Problems

- conforming Q₁ FEM, Lagrange basis
- 256 electrodes, 300'000 grid cells, 60'000 vertices
- Speedup 50 on E5-2698v3, 2.3 GHz, 16 cores (max. theoretical speedup 64)


High-performance (high-order) DG Solver

- Extended assembly to meshes with multi-linear geometry using sum-factorized geometry evaluation
- Fully vectorised parameter evaluations and geometry calculations at quadrature points



Sum-Factorized DG Assembly: Results

Computational Throughput (1 Socket)

Hardware Utilization (1 Socket)

- Full operator application/assembly for two problems of different computational intensity,
 2x Intel Xeon E5-2698v3 2.3 GHz, 16 cores, AVX2, fully loaded
- Smaller problem size for matrix-based computations due to memory constraints

High-performance (high-order) DG Solver

- Extended assembly to meshes with multi-linear geometry using sum-factorized geometry evaluation
- Fully vectorised parameter evaluations and geometry calculations at quadrature points
- Applying sum-factorized assembly to Navier-Stokes problems (cooperation with Marian Piatkowski, Heidelberg)
- Incorporating knowledge into code generation framework (cooperation with Dominic Kempf, René Heß, Heidelberg)

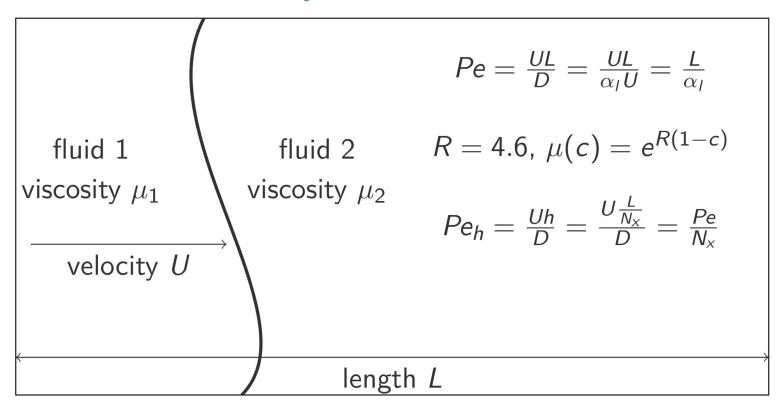
High-performance (high-order) DG Solver

- Extended assembly to meshes with multi-linear geometry using sum-factorized geometry evaluation
- Fully vectorised parameter evaluations and geometry calculations at quadrature points
- Applying sum-factorized assembly to Navier-Stokes problems (cooperation with Marian Piatkowski, Heidelberg)
- Incorporating knowledge into code generation framework (cooperation with Dominic Kempf, René Heß, Heidelberg)
- Improved inversion of diagonal blocks in partially matrix-free two-level preconditioner (matrix-free for DG + AMG on $P_{0,1}$ subspace, cooperation with Eike Müller, Bath):
 - Different types of Krylov solvers (BiCGStab, GMRES)
 - Block SSOR and tridiagonal preconditioners (for more complicated problems less amenable to block Jacobi)

Sum-Factorized DG Assembly: Results

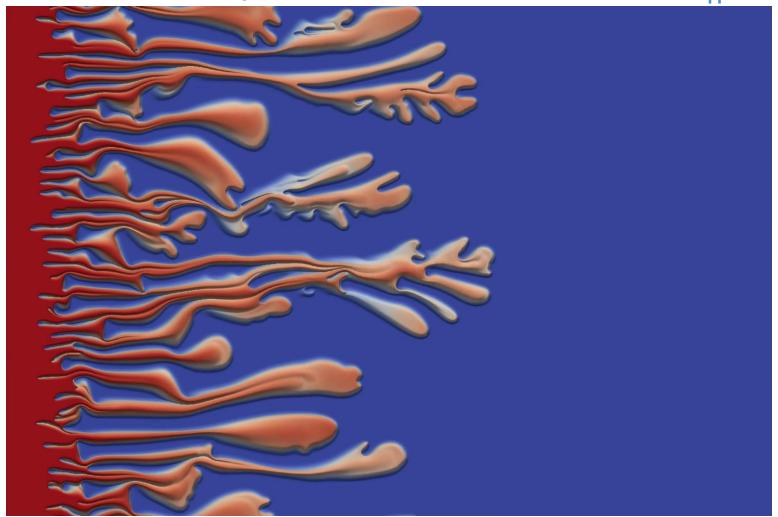
Total Solution Time

Number of block-iterations ϵ =10⁻²



Results by Eike Müller (University of Bath)

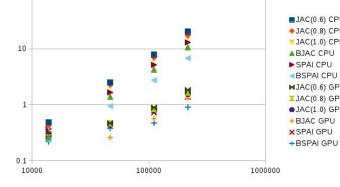
- SIPG for 3D stationary convection diffusion equation
- GMRES + tridiagonal preconditioner (large grid Peclet number)
- Slight advantage for storing inverted blocks (partially matrix-free) but larger memory footprint


Miscible Displacement Problem

- Application in CO₂ sequestration or polymer flooding
- unstable flow for R > 0
- Needs Pe_h ≈ 1 to avoid unphysical oscillations
- Aspect ratio 3: 2, periodic boundary conditions in y-direction

SPPEXA SEESSE

Miscible Displacement Pe = 7200, Pe_h = 2



155 · 10⁶ DOF in 2D, p=1, 2nd order Alexander-scheme, 17'000 time steps 128 Xeon E5-2630 v3, 8 core, 32h

Hardware-aware preconditioning

A versatile, accelerator-exploiting preconditioner for DUNE based on approximate inverses

- First phase: $\mathbf{u} \leftarrow \mathbf{M}\mathbf{v}, \ \mathbf{M} = \mathrm{SPAI}(\mathbf{A}) \approx \mathbf{A}^{-1}$ Proved to be numerically effective
- 2016: assemble M efficiently on CPU and GPU: Different approaches featured:

Machine Learning

Treat matrices as discrete functions in a function regression train a Deep Learning Net with pairs $(\mathbf{A}, \mathbf{A}^{-1})$ Make inference for \mathbf{M}

First results with fixed sparsity,
Implementation with TensorFlow
CPU and GPU

Standard

Many Householder transform-based QR decompositions, batched on GPU

cuBLAS, cuSPARSE and MKL ~4x GPU v. CPU

Monte Carlo

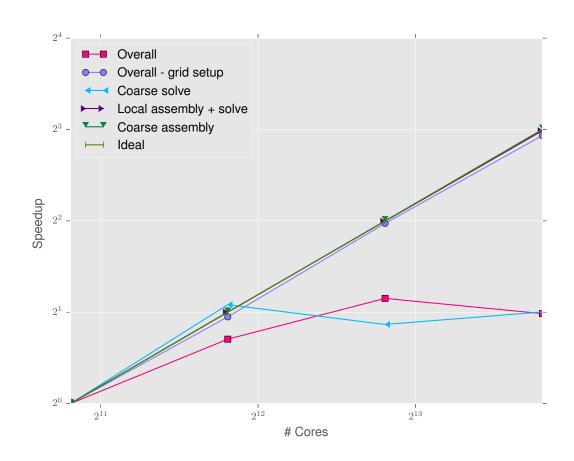
Partial randomization via Markov Chains

$$m_{ij} = \lim_{N \to \infty} \frac{1}{N} \sum_{s=1}^{N} \left(\sum_{q=0}^{\infty} \frac{W_q}{a_{ii}} \delta_{s_q j} \right)$$

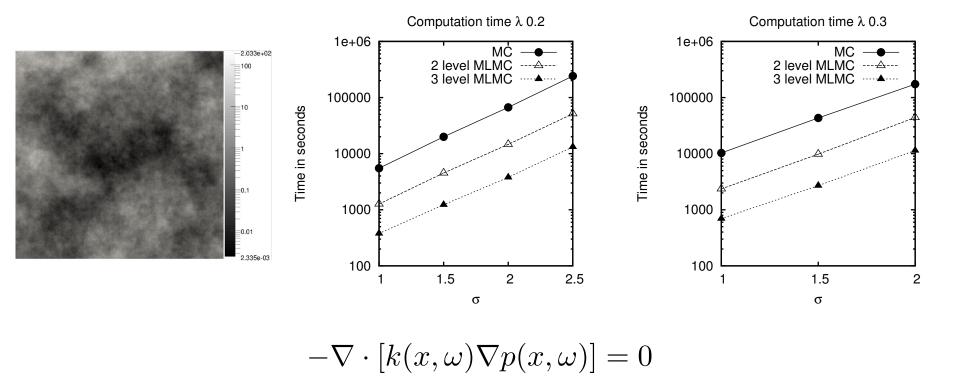
CUDA and MKL ~5x GPU v. CPU

Fault Tolerance

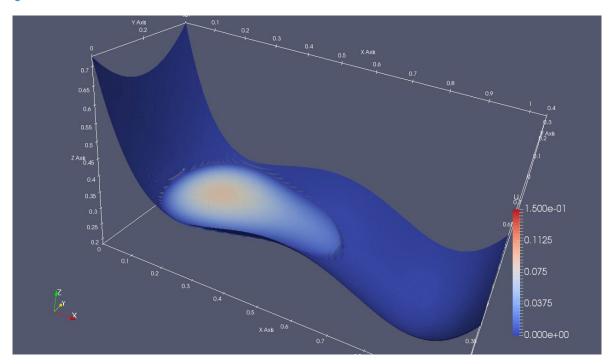
- New fault-tolerant multigrid (geometric and algebraic)
- Basic idea: use properties from Full Approximation Scheme-Multigrid to protect the linear case
- At the moment targets bit flips, node loss still work in progress
- Local failure local recovery, no communication for faulty inner DOF
- Fault detection and correction within one Multigrid cycle
- Enables using Multigrid (V, F, W) as a preconditioner
- Very few false positives, < 10% overhead
- Parallel implementation in FEAT and DUNE::ISTL almost completed


V-cycle	poisson	dico	andi	andicore
fault-free	4	6	14	7
classic	4.225(272)	6.268(335)	15.111(850)	7.466(439)
ftmg	4.038	6.007	14.007	7.017
false-positive	13	21	27	25
worse	15	1	0	1

Averaged iterations from 4000 test runs, error probability 10⁻⁷ per DOF per smoothing step


Application: Adaptive Multiscale Methods

- Strong scaling of Multiscale-Finite Element Code: 96³ = 884′736 cubes on coarse scale with 12³ fine cells per coarse cell, 1.5 · 109 cells in total
- Phase 2 target: Adaptive multilevel hybrid implementation of the localised reduced basis method
 - Prototype for parallel SWIPDG discretization on arbitrarily partitioned grids
 - Realized Python bindings as a precursor to implementing model reduction in pyMOR


Application: Multilevel Monte-Carlo

- Good acceleration with Multilevel Monte-Carlo compared to standard Monte-Carlos scheme
- Ongoing work on improvement of parallelization and permeability generator

Application: Land-Surface-Model

- Diffusive Wave Approximation for surface runoff
 - Parallel arbitrary order DG Implementation
 - Factor 10'000 speedup with semi-implicit Time-Discretization compared to explicit scheme
- Richards-Equation for subsurface flow
 - Parallel arbitrary order DG Implementation
 - Diagonally-implicit Runge-Kutta in time, Newton for linearization
- Operator-Splitting, surface/subsurface coupling with special form of Dirichlet-Neumann Coupling (ongoing work)

Activities and Outreach

Conferences and Workshops

- HPC-FEA: High-Performance Computing in Finite Element Applications, Minisymposium, Pilsen (Czech Republic), together with **SPPEXA** and **TERRA-NEO**
- Exa-scale ready PDE solvers, Minisymposium, Algorithmy 2016, Podbanske (Slovakia)

Summerschools and Tutorials

- Numerical GPGPU (2 times), Dortmund
- Accelerator Computing (with SPPEXA and DASH), Obernai (France)
- DUNE/PDELab Course, Heidelberg
- WUCSSS 2016, Bangkok (Thailand)
- ESSAM School on Mathematical Modelling, Numerical Analysis and Scientific Computing, Kacov (Czech Republic)
- Summer School on Applied Mathematics and Scientific Computing, Manila (Philipines)

Invited Guests

Michael Ortiz (Caltech), Svetozar Margenov (Bulgarian Academy of Science)

Cooperation

with EXASTENCILS, TERRA-NEO, AIMES, ADA-FS, EXA-DG and EXAMAG

10 Papers, 25 Keynotes, Talks and Posters related to SPPEXA in 2016

Activities and Outreach

Conferences and Workshops

- HPC-FEA: High-Performance Computing in Finite Element Applications, Minisymposium, Pilsen (Czech Republic), together with **SPPEXA** and **TERRA-NEO**
- Exa-scale ready PDE solvers, Minisymposium, Algorithmy 2016, Podbanske (Slovakia)

Summerschools and Tutorials

- Numerical GPGPU (2 times), Dortmund
- Accelerator Computing (with SPPEXA and DASH), Obernai (France)
- DUNE/PDELab Course, Heidelberg
- WUCSSS 2016, Bangkok (Thailand)
- ESSAM School on Mathematical Modelling, Numerical Analysis and Scientific Computing, Kacov (Czech Republic)
- Summer School on Applied Mathematics and Scientific Computing, Manila (Philipines)

Invited Guests

Michael Ortiz (Caltech), Svetozar Margenov (Bulgarian Academy of Science)

Cooperation

with EXASTENCILS, TERRA-NEO, AIMES, ADA-FS, EXA-DG and EXAMAG

10 Papers, 25 Keynotes, Talks and Posters related to SPPEXA in 2016

Christian Engwer successfully completed Tenure-track at University of Münster

