

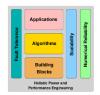
Gerhard Wellein
Bruno Lang
Achim Basermann
Holger Fehske
Georg Hager
Tetsuya Sakurai

Kengo Nakajima

Computer Science, University Erlangen
Applied Computer Science, University Wuppertal
Simulation & SW Technology, German Aerospace
Institute for Physics, University Greifswald
Erlangen Regional Computing Center
Applied Mathematics, University of Tsukuba
Computer Science, University of Tokyo

Garching, March 20th, 2017

ESSEX-II team



21 (accepted) publications

21 Talks

Full project in person meetings:

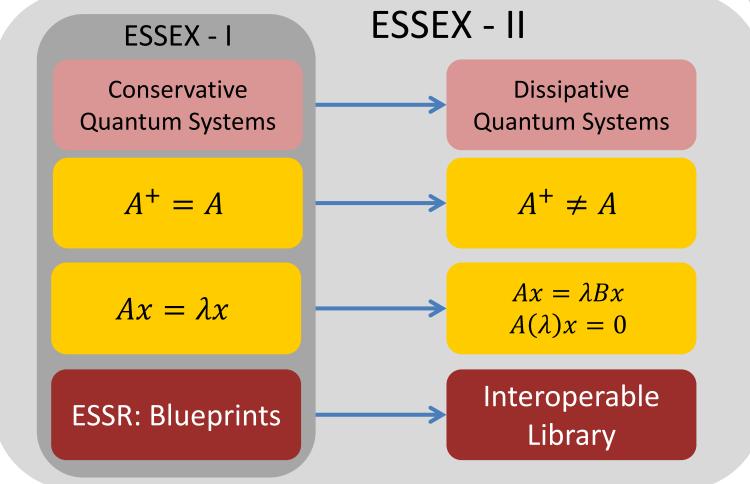
January 21 / 22 (Berlin): Start-up Meeting

September 19 – 22 (Erlangen): Coding week

Continous meetings / visits / video conferences

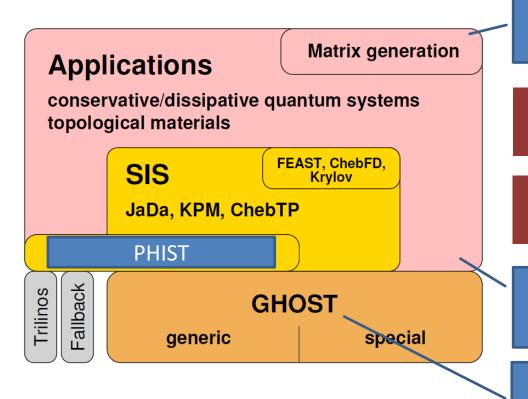
Joint PMAA 2016 minisymposium and ISC 2017 minisymposium

Motivated by quantum physics applications



→ Sparse eigenvalue solvers of broad applicability

ESSEX-II: Focus topics in 2016



Scalable matrix generation for a collection of quantum physics problems

Impact of enhanced / reduced accuracy

Implementation & evaluation of various preconditioning strategies

CRAFT library:
Application-level Checkpoint/Restart &

Automatic Fault Tolerance (MPI-ULFM)

Reference paper
TSMM@GPU kernels
P100/KNL porting / optimization

GHOST: General Hybrid Optimized Sparse Toolkit PHIST: Pipelined Hybrid Parallel Iterative Solver Toolkit

ESSEX project webpage: http://blogs.fau.de/essex/

Solvers & Hardware efficiency

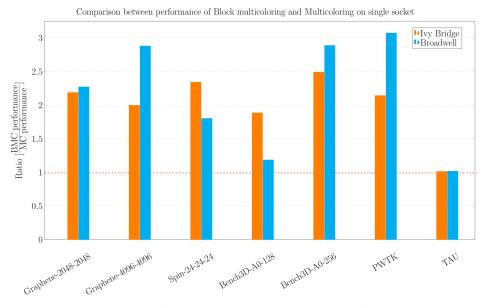
Hardware efficient (linear) solvers Kaczmark solver (used in BEAST-C)


```
for row = 0 : nrows do
  scale = b[row]
  norm = 0
  for idx = rowptr[row] : rowptr[row + 1] do
    scale - = val[idx] * x[col[idx]]
    norm+=val[idx]*val[idx]
  end for
  scale* = omega/norm
  for idx = rowptr[row] : rowptr[row + 1] do
    x[col[idx]] + = scale * val[idx]
  end for
end for
               150 200
                        250
                            300
  100
                                         beı
  150
                                         bw
  200
                                          bs_2
                                          re_2
  250
                                         bw
  300
                                         rs_3
  350
```

$$x^{k+1} = x^k + \omega * \frac{(b_i - \langle A_i, x^k \rangle)}{\|A_i\|^2} * A_i^T$$

Parallelization

- Standard: D2-multicoloring (distance: 2) (D2-MC)
- New: block-multicoloring (BMC)(+ D2-MC, where needed)

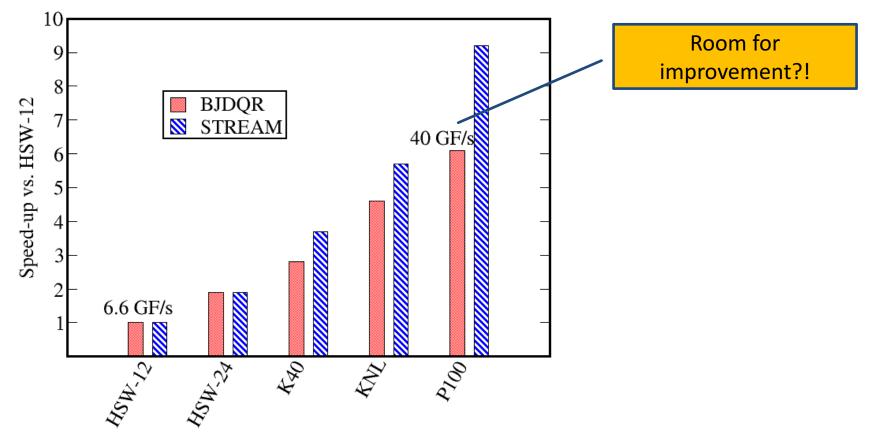


C.L. Alappat, Implementation and Performance Engineering of the Kaczmarz Method for Parallel Systems, Master Thesis

ESSEX II - Equipping Sparse Solvers for Exascale

Hardware efficient (eigen) solvers Performance Portability with PHIST+GHOST

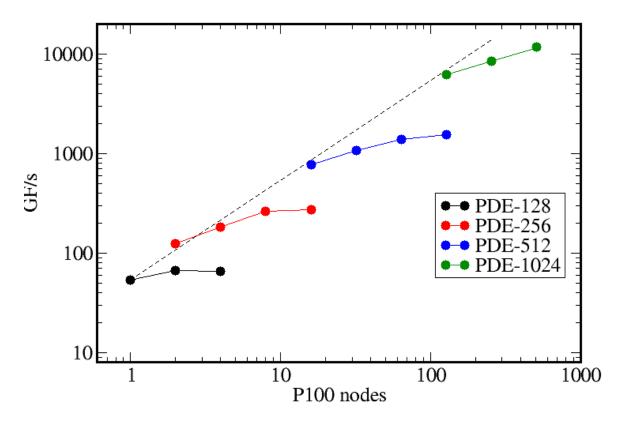
- Find 20 left-most eigenpairs of a spin-chain matrix (N ≈ 2.7M)
- Block Jacobi-Davidson QR method with MINRES 'preconditioner' (BJQR)
- Hardware bottleneck: main memory bandwidth(?)



ESSEX II - Equipping Sparse Solvers for Exascale

Hardware efficient (eigen) solvers Parallel Performance Portability: PHIST+GHOST

- Find 10 left-most eigenpairs of 3D non-symmetric PDE
- Block Jacobi-Davidson QR method with GMRES 'preconditioner' (BJQR)
- Scalability tests on Piz Daint (with P100) (2 vectors/block limited memory)



ESSEX II - Equipping Sparse Solvers for Exascale

Solvers & Methods numerical efficiency

Projection based eigensolvers: Mixed precision

Finding the eigenpairs (λ, x) of $Ax = Bx\lambda$ inside $I_{\lambda} = [\lambda, \lambda]$

Single precision in early iterations:

- a) Save energy b) predict behaviors in high precision operations
- 🛑 : Convergence barred 🜎 : Limited effect 👚 : Lasting effect

Choose m (> number of desired eigenpairs) and $Y \in \mathbb{R}^{n \times m}$ while not converged

Construct $U :\approx P_1 Y$ (polynomial, contour integral, or moments)

Compute SVD of U, resize subspace

Orthogonalize $U - / \bigcirc$

Solve reduced eigenproblem $A_UW = B_UW\Lambda$

with $A_{II} := U^T A U$. $B_{II} := U^T B U$

X := UW

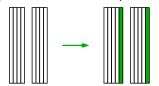
Orthogonalize against locked eigenpairs X, lock newly converged eigenpairs 🛑 /

Projection based eigensolvers: Addressing SDC

Most time-consuming part in BEAST(-P/-C): subspace projection $U = P_{A,B} Y$

During (polynomial or contourbased) projection:

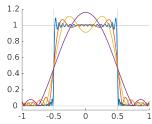
Add checksum column(s) (linear combinations)



< 3% overhead for 1.3M top. ins. on 160 cores, check every 100 MVMs

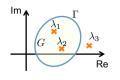
A posteriori analysis:

► Compare $\sigma_i(U^HBU)$ to max of filter function

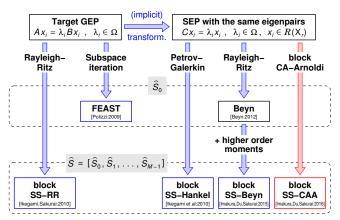


Cheap

Block SS-CAA: A novel contour-based eigensolver



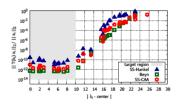
- Analyzed the relationship among typical contour integral-based eigensolvers
- Proposed novel method using communicationavoiding (CA) Arnoldi: block SS-CAA



Block SS-CAA: Results

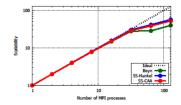
Computational accuracy:

- ▶ gen_hyper2 (n = 1,000) synthetic
- NLEVP: hyperbolic quadratic matrix polynomial
- MATLAB2016b



Scaling:

- railtrack2 (n = 353, 205) model of the vibration of rail tracks
- NLEVP: quadratic eigenvalue problem
- COMA@U. of Tsukuba



Preconditioner of KS method for ill-conditioned problem

Target: Linear systems $\mathbf{A}x = b$

Model name	DOF	Non-zero entries per row		
Graphene	128~1,000,000	4 or 13		
Kohn-Sham	57,575~76,163	20~24 on average		

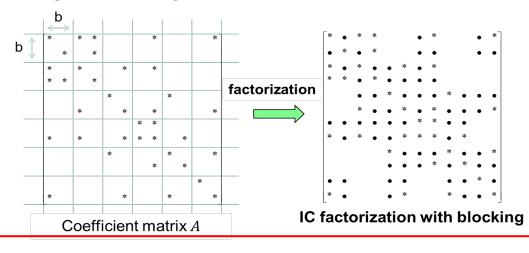
- ► Properties of coefficient matrix *A*
- ill-conditioned Indefinite Small diagonal entries

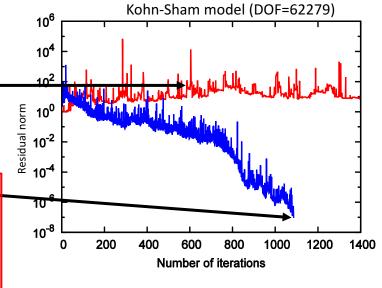
Hard to be solved by original ICCG

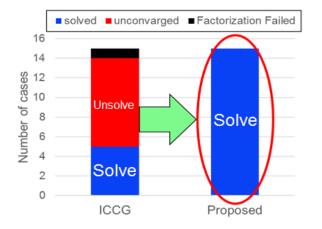
Our Proposal

New preconditioner with regularizations

- Reg.1) Diagonal shift
- •Reg.2) Blocking







Hardware efficient solvers & applications

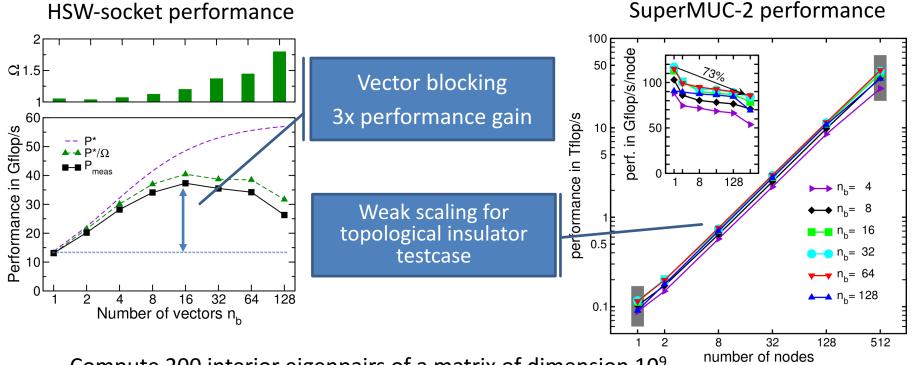
Chebyshev filter diagonalization: Algorithm & Performance (I)

Many interior eigenvalues of large sparse (Hermitian) matrices

- uses only spMVM / low synch.
 - convergence $\leftarrow \rightarrow$ eigenvalue density \Rightarrow large number of spMVMs
- clue to convergence: search vectors ≫ target vectors
 - \Rightarrow massive vector blocking

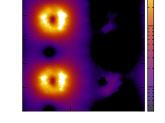
- - \Rightarrow spMMVM

Chebyshev filter diagonalization: Algorithm & Performance (II)

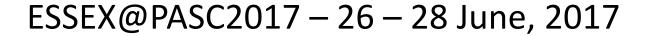


Compute 200 interior eigenpairs of a matrix of dimension 10⁹ (10 hrs on 512 nodes)

•		•					
Matrix	Nodes	D	$[\underline{\lambda}:\overline{\lambda}]_{\mathrm{rel}}$	N_T	N_p	Runtime [hours]	Sust. perf. [Tflop/s]
topi1	32	6.71e7	7.27e-3	148	2159	3.2 (83%)	2.96
topi2	128	1 07 -0	$3.64e{-3}$	148	4319	4.9 (88%)	11.5
topi3	512	1.07e9	1.82e-3	148	8639	10.1 (90%)	43.9
graphene1	128	2,0.00	4.84e-4	104	32463	10.8 (98%)	4.6
graphene2	512	1.07e9	2.42e-4	104	64926	16.4 (99%)	18.2



Pieper, Kreutzer, Alvermann, Galgon, Fehske, Hager, Lang, Wellein, J. Comp. Phys. 325, 226 (2016)



COMPUTING BULKS OF INNER EIGENPAIRS OF LARGE SPARSE MATRICES: FROM APPLICATIONS AND ALGORITHMS TO PERFORMANCE AND SOFTWARE ENGINEERING (I+II)

- Takeo Hoshi (Tottori University, Japan)
- Tetsuya <u>Sakurai</u> (University of Tsukuba, Japan)
- Yousef Saad (University of Minnesota, USA)
- Andreas <u>Alvermann</u> (Universität Greifswald, Germany)
- Kengo <u>Nakajima</u> (The University of Tokyo, Japan)
- Hartwig Anzt (University of Tennessee, USA)
- Jonas <u>Thies</u> (German Aerospace Center, Germany)
- Mike Heroux (Sandia National Laboratories, USA)

https://pasc17.pasc-conference.org/program/minisymposia/