
EXAHD Teachlet

An Introduction to the Combination Technique

July 1, 2016

1 The combination technique step by step

In this demo, we will show how the combination technique works step by step. Our goal is to interpolate a
simple function (2D parabola) using the combination technique.

Our 2D parabola is given by
f(x, y) = 16x(x− 1)y(y − 1)

in the unit square (x, y) = [0, 1]2

First, we import several functions.

In [1]: %pylab inline

Populating the interactive namespace from numpy and matplotlib

In [2]: from sys import path

path.append(’./src/’)

General useful Python modules

import time

import pgf_plots as pgf

import matplotlib.animation as animation

from IPython.display import clear_output

Modules specific to the combination technique, from our Git repository

from combinationScheme import combinationSchemeArbitrary, combinationSchemeFaultTolerant

from combiGrid import combiGridDummy2D, combiGrid

from combineGrids import combineGrids

from HelperFunctions import *

import ActiveSetFactory

These are some useful functions to plot with latex (you can ignore the warning)

pgf_plot = pgf.pgf_plotter(plt)

pgf_plot.update_rc(plt)

plt.rc(’text’, usetex=True)

/home/sccs/anaconda/lib/python2.7/site-packages/matplotlib/ init .py:855: UserWarning: text.fontsize is deprecated and replaced with font.size; please use the latter.

warnings.warn(self.msg depr % (key, alt key))

First we generate a parabola on a “high” resolution full grid with 17 x 17 points. You can choose a higher
resolution by varying lmax

In [3]: # The solution will have (2^lmax + 1) discretization points

lmax = (4,4)

1

We create a 2D grid.

The "True" values indicate that the grid has boundary points in both dimensions

grid = combiGridDummy2D(lmax,(True,True))

We fill the grid with our 2D parabola function

grid.fillData(parabola_2d)

data = grid.getData()

Plot the solution

fig = figure(figsize=(8,6))

ax = gca()

title(’High resolution parabola’,fontsize=24)

im = ax.pcolormesh(data)

ax.axes.set_xlim(0, data.shape[1])

ax.axes.set_ylim(0, data.shape[0])

fig.colorbar(im)

Out[3]: <matplotlib.colorbar.Colorbar instance at 0x7f7131214878>

Now take a look at the following “grid of grids”, which shows 16 different full grids with varying dis-
cretization resolutions in x and y directions.

2

In [4]: # See the Appendix for a brief explanation of the data structures used

lmin = (1,1)

lmax = (4,4)

factory = ActiveSetFactory.ClassicDiagonalActiveSet(lmax, lmin, 0)

activeSet = factory.getActiveSet()

scheme = combinationSchemeArbitrary(activeSet)

combiG = combineGrids(scheme)

for s in scheme.hierSubs((1,1),lmax):

grid = combiGridDummy2D(s,(True,True))

grid.fillData(fun)

combiG.addGrid(grid)

sz=(12,12)

plot_combination_technique(lmin, lmax, {}, combiG, figure(figsize=sz))

We can refer to the different grids by their position on the chart. For example, the coarsest grid (bottom
left, with 3x3 grid points) is located in coordinate (1,1). This coordinate is the grid’s level l. A grid of level

3

l has 2l + 1 grid points. So the grid on the bottom right has level (4,1) (17x3 grid points).
If we could choose among any of these 16 grids to perform our interpolation, and wanted to have the

highest resolution possible, we’d choose the right top grid:

In [5]: combiG.gridsDict[(lmax),].fillData(parabola_2d)

plot_combination_technique(lmin, lmax, {lmax:1}, combiG, \

figure(figsize=sz), plusMinus=False)

Suppose that you cannot afford interpolating your function with such a high resolution (17x17). The
combination technique gives you an alternative. Take a look at the two solutions plotted below. The grid
with level (4,1) has a high resolution in the x dimension and a low resolution in the y dimension (17x3
points); the grid with level (1,4) has a high resolution in the y dimension but a low resolution in the x
dimension (3x17 points). We could ask ourselves: is there a way to combine these solutions to approximate
the full grid solution (17x17 points)?

In [6]: keyX = (lmax[0],lmin[0])

keyY = (lmin[0],lmax[0])

4

combiG.gridsDict[(keyX),].fillData(parabola_2d)

combiG.gridsDict[(keyY),].fillData(parabola_2d)

combiG.gridsDict[(lmax),].fillData(fun)

fig = figure(figsize=sz)

plot_combination_technique(lmin, lmax, {keyX:1, keyY:1}, combiG, fig, plusMinus=0)

It turns out that we can “add” these two coarse parabolas to approximate the high resolution parabola
(17x17).

Three questions arise:

1. How does one “add” grids of different resolutions?

2. How good is this approximation compared to the full grid?

3. Why would one want to do this?

Let’s start with the first question. Adding grids of different resolutions requires us to do some interpolation
(or hierarchization) but we won’t go into the details. For now you can imagine superposing the values of

5

both grids. The only problem is that the two grids have some grid points in common (9 of them, actually.
Can you spot which ones?). At these grid points we will add both solutions together and subtract a third
solution, namely, the one on grid (1,1). This additional grid contains exactly the 9 points that the grids
(1,4) and (4,1) have in common.

In [7]: key_common = tuple(map(min,zip(*[keyX,keyY])))

combiG.gridsDict[(key_common),].fillData(parabola_2d)

dict_small = {keyX:1, keyY:1, key_common:-1}

In [8]: fig = figure(figsize=sz)

plot_combination_technique(lmin, lmax, dict_small, combiG, fig)

To summarize, we have to perform the following steps: - Solve your problem on grids (4,1), (1,4), and
(1,1) - Superpose / add solutions from grids (4,1) and (1,4) - Subtract the solution from grid (1,1)

This combination of grids results in a sparse grid. In this case, the sparse grid looks as follows:

6

In [9]: activeSetSmall = set([keyX,keyY])

schemeSmall = combinationSchemeArbitrary(activeSetSmall)

combiSG = combineGrids(schemeSmall)

for s in [keyX, keyY, key_common]:

grid = combiGridDummy2D(s,(True,True))

grid.fillData(fun)

combiSG.addGrid(grid)

sg = combiSG.plotSparseGrid(size=(8,8),ptsize=9,color=’black’)

Look at the combined solution below, compared to the full grid solution. You can already start to see
the answer to our second question: how good is the approximation? In this case, pretty good! (See the error
calculation below, and observe the plots)

In [10]: combiSimple = combineGrids(schemeSmall)

for s in [keyX,keyY,key_common]:

7

grid = combiGridDummy2D(s,(True,True))

grid.fillData(parabola_2d)

combiSimple.addGrid(grid)

solution_ex = parabola_2d(lmax)

solution_combi = combiSimple.getCombination()

In [11]: sz2=(12,4)

fig = figure(figsize=sz2)

plot_all_solutions(fig, solution_ex, solution_combi)

err_ct = eN.L1AverageError(solution_combi, solution_ex)

print "Combination technique error:", "%0.2f" %(err_ct*100),"%"

Combination technique error: 2.38 %

In order to plot the combined grid above, we interpolated the sparse grid to the full grid space. They
look quite similar!

The answer to the third question is simple: the three solutions we combined are much cheaper to compute
than the full solution. Additionally, since these three problems are independent of one another, they can be
solved in parallel!

Let’s take a step further and consider an even smarter combination of grids. Have a look at the seven
solutions plotted below.

In [12]: keys = scheme.dictOfScheme.keys()

combi_classical = combineGrids(scheme)

for s in scheme.hierSubs((1,1),lmax):

grid = combiGridDummy2D(s,(True,True))

if s in keys:

grid.fillData(parabola_2d)

else:

grid.fillData(fun)

combi_classical.addGrid(grid)

In [13]: plot_combination_technique(lmin, lmax, scheme.dictOfScheme, \

combi_classical, figure(figsize=sz), plusMinus=False)

8

Once again, the solutions plotted above are much cheaper than the full grid with 17x17 points. We can
again combine these grids to obtain an approximation of the full grid. The way to combine them is to take
weights +1 for grids on the “main diagonal” and -1 for the grids on the “lower diagonal”, as illustrated
below.

In [14]: plot_combination_technique(lmin, lmax, scheme.dictOfScheme, \

combi_classical, figure(figsize=sz), plusMinus=True)

9

This is called the Classical Combination Technique. The sparse grid that results from this combination
looks as follows:

In [15]: keys = scheme.dictOfScheme.keys()

combiSG = combineGrids(scheme)

for s in keys:

grid = combiGridDummy2D(s,(True,True))

grid.fillData(fun)

combiSG.addGrid(grid)

sg = combiSG.plotSparseGrid(size=(8,8),ptsize=9,color=’black’)

10

Combining these seven grids above gives us an even better approximation than our original combination
of three grids.

In [16]: solution_ex = parabola_2d(lmax)

solution_combi = combi_classical.getCombination()

plot_all_solutions(figure(figsize=sz2), solution_ex, solution_combi)

err_ct = eN.L1AverageError(solution_combi,solution_ex)

print "Combination technique error:", "%0.2f" %(err_ct*100),"%"

Combination technique error: 0.31 %

11

1.1 The truncated combination technique

In our example above, the most anisotropic grids might introduce some unwanted error. We are talking
about grids with levels (1,4), (1,3), (4,1) and (3,1). For this reason we usually truncate the combination
technique, excluding these anisotropic grids. One example could look as follows:

In [17]: # This is where we specify the truncation

We choose (2,2) as minimum resolution instead of (1,1)

lmin = (2,2)

lmax = (4,4)

dim = len(lmin)

factory = ActiveSetFactory.ClassicDiagonalActiveSet(lmax, lmin, 0)

activeSet = factory.getActiveSet()

scheme = combinationSchemeArbitrary(activeSet)

keys = scheme.dictOfScheme.keys()

combi_trunc = combineGrids(scheme)

for s in scheme.hierSubs((1,1),lmax):

grid = combiGridDummy2D(s,(True,True))

if s in keys:

grid.fillData(parabola_2d)

else:

grid.fillData(fun)

combi_trunc.addGrid(grid)

plot_combination_technique(lmin, lmax, scheme.dictOfScheme, \

combi_trunc, figure(figsize=sz))

12

The sparse grid that results from this combination looks as follows:

In [18]: keys = scheme.dictOfScheme.keys()

combiSG = combineGrids(scheme)

for s in keys:

grid = combiGridDummy2D(s,(True,True))

grid.fillData(fun)

combiSG.addGrid(grid)

sg = combiSG.plotSparseGrid(size=(8,8),ptsize=9,color=’black’)

13

This combination is slightly more expensive but yields better results.

In [19]: solution_ex = parabola_2d(lmax)

solution_combi = real(combi_trunc.getCombination())

plot_all_solutions(figure(figsize=(12,4)), solution_ex, solution_combi)

err_ct = eN.L1AverageError(solution_combi, solution_ex)

print "Combination technique error:", "%0.2f" %(err_ct*100),"%"

Combination technique error: 0.05 %

14

Now you can play around with the simulation parameters and see how the combination technique behaves.

2 Fault tolerance with the combination technique

Since each component solution can be solved independently of each other, the combination technique can be
parallelized. However, if some processes fail, some component solutions might go lost, as shown below.

In [20]: lmin = (1,1)

lmax = (4,4)

factory = ActiveSetFactory.ClassicDiagonalActiveSet(lmax, lmin, 0)

activeSet = factory.getActiveSet()

scheme = combinationSchemeArbitrary(activeSet)

combi_ft = combineGrids(scheme)

for s in scheme.hierSubs((1,1),lmax):

grid = combiGridDummy2D(s,(True,True))

if s in scheme.dictOfScheme.keys():

grid.fillData(parabola_2d)

else:

grid.fillData(fun)

combi_ft.addGrid(grid)

faults = [(2,3)]

plot_combination_technique(lmin, lmax, scheme.dictOfScheme, combi_ft, \

figure(figsize=sz), withFaults=True, faults=faults)

15

In this case, grid (2,3) has been lost due to a hardware failure. The Fault Tolerant Combination Technique
can overcome this problem. It excludes the failed solutions by finding an alternative combination of solutions.
This is done as follows:

In [21]: # Create fault tolerant combination technique

schemeFT = combinationSchemeFaultTolerant(factory)

combi_ft = combineGrids(schemeFT)

for s in schemeFT.hierSubs((1,1),lmax):

grid = combiGridDummy2D(s,(True,True))

if s in schemeFT.dictOfScheme.keys():

grid.fillData(parabola_2d)

else:

grid.fillData(fun)

combi_ft.addGrid(grid)

16

Specify which solutions will fail

faults = [(2,3)]

Recover the scheme

schemeFT.recoverSchemeGCP(faults)

combi_ft = combineGrids(schemeFT)

for s in schemeFT.hierSubs((1,1),lmax):

grid = combiGridDummy2D(s,(True,True))

if s in schemeFT.dictOfScheme.keys():

grid.fillData(parabola_2d)

else:

grid.fillData(fun)

combi_ft.addGrid(grid)

In [22]: plot_combination_technique(lmin, lmax, schemeFT.dictOfScheme, \

combi_ft, figure(figsize=sz))

17

This new combination is not as good as the original since it only uses 5 grids instead of 7. However, we
avoid recomputing the solutions we lost, so we don’t need any form of checkpoint / restarting.

The sparse grid that results from this combination looks as follows:

In [23]: keys = schemeFT.dictOfScheme.keys()

combiSG = combineGrids(schemeFT)

for s in keys:

grid = combiGridDummy2D(s,(True,True))

grid.fillData(fun)

combiSG.addGrid(grid)

sg = combiSG.plotSparseGrid(size=(8,8),ptsize=9,color=’black’)

You can also see that it has fewer grid points than the sparse grid we had for the combination of the 7
grids. The error of this new combination technique is slightly larger than the original combination technique

18

In [24]: solution_ex = parabola_2d(lmax)

solution_combi = real(combi_ft.getCombination())

plot_all_solutions(figure(figsize=(12,4)), solution_ex, solution_combi)

err_ct = eN.L1AverageError(solution_combi, solution_ex)

print "Combination technique error after recovering from faults:", "%0.2f" %(err_ct*100),"%"

Combination technique error after recovering from faults: 0.65 %

Notice that now we have used a component solution that was not in the original scheme (solution (1,2)).
In order for the fault tolerant combination technique to work we have to include these additional solutions
in the original scheme, and use them in case any faults occur. This is what the original fault tolerant scheme
really should look like:

In [25]: schemeFT = combinationSchemeFaultTolerant(factory)

combi_ft = combineGrids(schemeFT)

for s in schemeFT.hierSubs((1,1),lmax):

grid = combiGridDummy2D(s,(True,True))

if s in schemeFT.dictOfScheme.keys():

grid.fillData(parabola_2d)

else:

grid.fillData(fun)

combi_ft.addGrid(grid)

plot_combination_technique(lmin, lmax, schemeFT.dictOfScheme, combi_ft, \

figure(figsize=sz), plusMinus=False)

19

This extra effort (computing 3 additional solutions) is in fact quite small compared to the overall com-
putational effort. In general, we will always compute two extra diagonals of grids to ensure fault tolerance.

Here’s another example:

In [26]: lmin = (2,2)

lmax = (6,6)

factory = ActiveSetFactory.ClassicDiagonalActiveSet(lmax, lmin, 0)

activeSet = factory.getActiveSet()

schemeFT = combinationSchemeFaultTolerant(factory)

combi_ft = combineGrids(schemeFT)

for s in schemeFT.hierSubs((1,1),lmax):

grid = combiGridDummy2D(s,(True,True))

if s in schemeFT.dictOfScheme.keys():

grid.fillData(parabola_2d)

else:

20

grid.fillData(fun)

combi_ft.addGrid(grid)

plot_combination_technique(lmin, lmax, schemeFT.dictOfScheme, \

combi_ft, figure(figsize=sz), plusMinus=False)

2.1 Solving time-dependent PDEs with the Combination Technique

The Combination Technique can also be used to solve different classes of PDEs, including PDEs whose
solution depends on time.

As an example, consider the 2D linear advection equation:

∂u

∂t
+ cx

∂u

∂x
+ cy

∂u

∂y
= 0,

in the unit square [0, 1]2 with periodic boundary conditions and initial condition u(x, y, t = 0) =
sin(2πx) sin(2πy). The analytical solution is given by u(x, y, t) = sin(2π(x− cxt)) sin(2π(y − cyt)), where cx

21

and cy are constant advection velocities, and we want to know the solution at a time t = 2. We can choose
for example cx = cy = 0.5.

The exact solution to our equation, given by u(x, y, t) = sin(2π(x− cxt)) sin(2π(y − cyt)), looks like this
(you can change the resolution by varying lmax):

In [27]: from Advection import *

c = (0.5,0.5)

dt = .01

tf = 0.2

Nt = int(ceil(tf/dt))

lmax = (4,4) # The solution will have (2^lmax + 1) discretization points

fig = figure(figsize=(6,6))

ax = gca()

title(’Exact solution’,fontsize=24)

for i in xrange(Nt):

time.sleep(.001)

advectionScheme = AdvectionSimple(c,i*dt,dt)

advectionFunction = lambda l: advectionScheme.exact_advection(l,i*dt)

grid = combiGridDummy2D(lmax,(True,True))

grid.fillData(advectionFunction)

data = grid.getData()

ax.pcolormesh(data.transpose())

ax.axes.set_xlim(0, data.shape[0])

ax.axes.set_ylim(0, data.shape[1])

clear_output(wait=True)

display(fig)

plt.close()

22

We can use the classical Combination Technique to solve this PDE. This means solving the PDE on each
of the seven grids below, and combining them.

In [28]: # Min and max levels

lmin = (1,1)

lmax = (4,4)

factory = ActiveSetFactory.ClassicDiagonalActiveSet(lmax, lmin, 0)

activeSet = factory.getActiveSet()

scheme = combinationSchemeArbitrary(activeSet)

keys = scheme.dictOfScheme.keys()

combiAdv = combineGrids(scheme)

advectionScheme = AdvectionSimple(c,tf,dt)

advectionFunction = lambda l: advectionScheme.solver(l)

for s in scheme.hierSubs((1,1),lmax):

grid = combiGridDummy2D(s,(True,True))

if s in keys:

grid.fillData(advectionFunction)

23

else:

grid.fillData(fun)

combiAdv.addGrid(grid)

In [29]: plot_combination_technique(lmin, lmax, scheme.dictOfScheme, \

combiAdv, figure(figsize=sz), plusMinus=True)

In [30]: solution_ex = advectionScheme.exact_advection(lmax,Nt*dt)

solution_combi = combiAdv.getCombination()

fullgrid = combiGridDummy2D(lmax,(True,True))

fullgrid.fillData(advectionFunction)

solution_full = fullgrid.getData()

sz3=(18,4)

24

plot_all_solutions(figure(figsize=sz3), solution_ex, solution_combi, solution_full)

err_full = eN.L1AverageError(solution_full,solution_ex)

err_ct = eN.L1AverageError(solution_combi,solution_ex)

print "Relative errors compared to the exact solution:"

print "Full solution:", "%0.2f" %(err_full*100),"%"

print "Combination technique solution:", "%0.2f" %(err_ct*100),"%"

Relative errors compared to the exact solution:

Full solution: 1.10 %

Combination technique solution: 6.92 %

2.2 References

• Griebel, M., Schneider, M., Zenger, C.: A combination technique for the solution of sparse grid prob-
lems. In: Iterative Methods in Lin. Alg., pp. 263–281 (1992)

• Harding, B., Hegland, M., Larson, J., Southern, J.: Fault tolerant computation with the sparse grid
combination technique. SIAM Journal on Scientific Computing 37(3), C331–C353 (2015)

2.3 Appendix

Brief explanation of the code Throughout this notebook we have repeatedly used several functions
that perform the combination technique. The first step to generate a combination technique is to specify
the minimum and maximum levels of resolution:

lmin = (2,2) lmax = (5,5)
With these parameters we create an object of the class ActiveSetFactory, with which we can create an

active set. For the classical combination technique, the active set is the set of levels on the main diagonal
(those with coefficients +1)

In [31]: factory = ActiveSetFactory.ClassicDiagonalActiveSet(lmax, lmin, 0)

activeSet = factory.getActiveSet()

print activeSet

set([(4, 1), (3, 2), (2, 3), (1, 4)])

With this active set we create a combination technique scheme which stores all levels and coefficients of
the combination technique

In [32]: scheme = combinationSchemeArbitrary(activeSet)

print scheme.dictOfScheme

{(3, 2): 1, (1, 3): -1, (3, 1): -1, (1, 4): 1, (2, 3): 1, (2, 2): -1, (4, 1): 1}

25

Then we use an object of the class combineGrids to store the data from all the combination grids. Each
combination grid is an object of the class combiGridDummy2D, which uses the method fillData to fill its
data. The grids are then added to the combi object.

In [33]: combiG = combineGrids(scheme)

keys = scheme.dictOfScheme.keys()

combi = combineGrids(scheme)

for s in keys:

grid = combiGridDummy2D(s,(True,True))

grid.fillData(parabola_2d)

combi.addGrid(grid)

Finally, we call the method getCombination in order to perform the combination of the data. It returns
a numpy array with the combination solution.

In [34]: solution_combi = combi.getCombination()

26

	The combination technique step by step
	The truncated combination technique

	Fault tolerance with the combination technique
	Solving time-dependent PDEs with the Combination Technique
	References
	Appendix

