
Efficient evaluation of weak forms in discontinuous

Galerkin methods

Background: This material gives an introduction to sum factorization as an efficient evaluation technique for the

integrals in discontinuous Galerkin methods on quadrilateral elements. It is intended for two lectures of 90 minutes given

to advanced students (Master or PhD level) with good knowledge on finite element methods.

The SPPEXA project ExaDG, financed by DFG in 2016–2018, brings these methods to a generic finite element context

through the deal.II finite element library, www.dealii.org. Example C++ implementations of these algorithms can

be found in the deal.II tutorials, available as open source. This text concentrates on the mathematical aspects of fast

evaluation of differential operators that builds the basis for large-scale simulation codes in the usual domain decomposition

framework, be it in explicit time integration or implicit linear solvers. The techniques in this text have their roots in

spectral element methods established in the 1980s. Textbooks with more extensive discussion of these methods are:

• Karniadakis, G.E., Sherwin, S.J.: Spectral/hp element methods for computational fluid dynamics, 2nd edn.

Oxford University Press (2005)

• Kopriva, D.: Implementing spectral methods for partial differential equations. Springer (2009)

1 DG-FEM discretization

We consider a scalar conservation law in dimensions d = 2, 3 of the form

∂u(x, t)

∂t
+∇ · f(u(x, t),x, t) = 0, x ∈ Ω ⊂ Rd,

u(x, t) = g(x, t), x ∈ ∂Ωi,

u(x, 0) = u0(x),

(1)

where f denotes the vector-valued flux function. Boundary conditions are set on all inflow boundaries

∂Ωi where the flux Jacobian satisfies

n̂ · ∂f
∂u

< 0.

We assume that a triangulation

Ωh =

K⋃
k=1

Dk

covers the domain Ω, with Dk polygonal elements. We assume a mapping from the reference element

to the real shape by a polynomial transformation, which can include curved boundaries.

We assume the local solution ukh to be a weighted sum of polynomials on the element Dk,

ukh(x, t) =

Np∑
i=1

ukh(xk
i , t)`

k
i (x), (2)

where ukh(xk
i , t) denotes the value of uh in node xk

i and `ki (x) is a Lagrange polynomial of degree N

which evaluates to one in the node xk
i and to zero in all other nodes of the element xk

j , j 6= i. Globally,

the element-wise solutions are combined into the solution uh.

The local statement of the DG-FEM is derived by multiplication of Equation (1) by the test functions

`kj , j = 1, . . . , Np and integration by parts of the spatial derivative:∫
Dk

[
∂ukh
∂t

`kj (x)− fk
h · ∇`kj (x)

]
dx +

∫
∂Dk

n̂ · f∗`kj (x)dx = 0. (3)

2 Basic DG scheme 2

The numerical flux f∗ can be computed in various ways. In this lecture, we consider the local Lax–

Friedrichs flux

f∗(u−h , u
+
h) =

f(u−h) + f(u+h)

2
+
C

2
n̂(u−h − u

+
h),

where u−h and u+h are the interior and exterior solution values (taken pointwise in the same physical

location of the evaluation point on the face) and C is the local maximum of the flux Jacobian,

C = max
u∈[u−

h ,u+
h]

∣∣∣∣n̂x∂f1∂u + n̂y
∂f2
∂u

∣∣∣∣ = max
u∈[u−

h ,u+
h]

∣∣∣∣n̂ · ∂f∂u
∣∣∣∣

for f = (f1, f2).

Similar to continuous finite elements, two sets of element shapes are in wide use for discontinuous

Galerkin methods:

Triangular/tetrahedral elements. The main advantage of triangular elements is the ease of mesh

generation. Off-the-shelf mesh generators are often sufficient to create high-quality meshes with

good statistics (good aspect ratios, no distorted element shapes). Moreover, nodal triangular

elements have the advantage that “linear” basis functions with N = 1 only involve the monomials

1, x, y up to linear and no mixed-quadratic terms. This reduces the number of unknowns to

reach a certain polynomial degree, in particular in 3D: A hexahedral basis with N = 4 consists

of 53 = 125 basis functions (up to tensor degree 4), whereas the polynomials up to degree 4

only involve 5 · 6 · 7/6 = 35 terms. Conversely, 120 basis functions per element on tetrahedra

offer polynomial degree N = 7 (and the associated higher convergence rates). Finally, triangular

elements with affine mappings allow to factor out the geometric factors. This way, only reference

element matrices and a single Jacobian factor per element are necessary for representing the

integrals in (3), significantly increase arithmetic intensity and thus performance on modern

computers.

Quadrilateral/hexahedral elements. For the same number of degrees of freedom and given suf-

ficient mesh quality, hexahedral elements are typically more accurate. Despite more degrees of

freedom per element, the considerably larger volume of hexahedra usually more than compen-

sates for the increased number of degrees of freedom. In addition, hexahedral meshes are easily

generated for boundary layers (e.g. extruding a mesh from a surface), even though this is often

manual labor. Finally, evaluation of tensor-product hexahedral shape functions is faster than

for tetrahedra when using tensorial evaluation, i.e., the work per degree of freedom is typically

less.

This text concentrates on the case of quadrilateral elements in 2D and hexahedral elements in 3D and

presents fast matrix-free evaluation schemes.

2 Basic DG scheme

For quadrilaterals, we construct the shape functions `ki (x) = `ki (x, y) by a tensor product of 1D

functions `ki1(x) and `ki2(y) as follows:

`ki (x, y) = `ki1+(N+1)i2
(x, y) = `ki1(x)`ki2(y),

for the index i = i1 + (N + 1)i2 of the shape functions.

In this formula, we assume a lexicographic numbering of degrees of freedom within the elements, where

i1 goes from 0 to N and i2 goes from 0 to N . Thus, the index i for the degrees of freedom on element

Dk goes from 0 to Np = (N + 1)2 (exclusive), as represented here for N = 3:

2 Basic DG scheme 3

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

i1

i2

For the one-dimensional node distributions, we use the Gauss–Lobatto node points from 1D in each

of the coordinate directions. This gives well-conditioned interpolation also when going to high orders,

as opposed to equidistant point distributions.

We insert these polynomial functions into the representation (2) and the integrals for DG-FEM. In

matrix notation, the equation reads

M∂u

∂t
− ST f(u) + Ff(u) = 0, (4)

where u describes the collection of all nodal unknowns on all elements, M is the mass matrix, −ST

the convection matrix and F the flux matrix the represents the coupling between elements through

the Lax–Friedrichs flux. In this text, we target explicit time integration. Since the mass matrix does

not couple between elements, we can write the equation in the form:

∂u

∂t
=M−1

(
ST −F

)
f(u). (5)

Instead of building all three matrices, the algorithm in the following only makes use that the inverse

mass matrix M−1 is explicitly computed whereas the integrals underlying S and F are evaluated on

the fly as we insert the known nodal values un in an explicit time stepping scheme. This form of

evaluation is called matrix-free evaluation.

Note that the mass matrix M is a dense matrix within one element for the Gauss–Lobatto node

points. For other basis functions (e.g. orthogonal basis functions), the mass matrix becomes diagonal

and thus even cheaper to invert. The techniques described below can also be used to invert the mass

matrix M or apply the inverse M−1 more quickly than a naive approach, by transforming to a basis

with diagonal mass matrix.

2.1 Computation of element mass matrix

For the mass matrix, we compute the following integral:

Mk
ij =

∫
Dk

`ki (x)`kj (x) dx.

As in finite elements, the integral is transformed to the reference element [−1, 1]2 with coordinates

r, s. We denote the Jacobian matrix of the transformation from the reference to the real element by

Jk. The 2 × 2 matrix Jk is given by Jk = dF k

dr =

[
∂Fk

1
∂r

∂Fk
1

∂s
∂Fk

2
∂r

∂Fk
2

∂s

]
, where F k = (F k

1 , F
k
2)T is a bi-linear

(or higher order) transformation from the unit cell nodes to the nodes in real coordinate. We denote

the Lagrange polynomials on the unit element by `i(r, s).

The integral for the mass matrix is thus given by the following formula:

Mk
ij =

∫ 1

−1

∫ 1

−1
`i(r, s)`j(r, s)|Jk(r, s)| drds

2 Basic DG scheme 4

The integral is approximated by quadrature. Here, we consider the case of Gaussian quadrature based

on the Gauss–Legendre quadrature nodes ξa and Gauss weights wa. From a one-dimensional Gauss

rule, a multi-dimensional rule is constructed by a tensor product, i.e., we select

• the Gauss nodes rq = (rq1 , sq2) = (ξq1 , ξq2)

• with quadrature weight wq = wq1wq2 .

This gives the integral approximation

Mk
ij ≈

Nc∑
q=1

`i(rq)`j(rq)|Jk(rq)|wq =

Nc,1D∑
q1=1

Nc,1D∑
q2=1

`i1(rq1)`i2(sq2)︸ ︷︷ ︸
`i(rq)

`j1(rq1)`j2(rq2)︸ ︷︷ ︸
`j(rq)

|Jk(rq1 , sq2)|wq1wq2 .

We usually choose the number of quadrature points per dimension Nc,1D to equal the number of basis

functions per direction, i.e., equal to N+1. Since Gaussian quadrature on N+1 evaluates polynomials

up to degree 2N + 1 exactly and the highest polynomial degree is 2N , this ensures exact quadrature.

However, for non-affine geometries, i.e., geometries where the transformation between unit and real

cell is not linear, the determinant of the Jacobian matrix |Jk(rq1 , sq2)| is also a polynomial. If a

bi-linear mapping from reference to real cell is used, its tensor degree is at most 1: The first column

in Jk is constant in r and linear in s and the second is constant s and linear in r, such that the

product in the determinant contains at most a product of a linear function in r and a linear function

in s. In 3D, the tensor degree is at most 2. If a polynomial mapping of degree l is used, it can

contain polynomials up to degree 2l − 1 (or 3l − 1 in 3D). This increases the number of quadrature

points necessary for exact integration. However, one often does not use more than N + 1 points per

dimension even in this case because the quadrature error appears to be of higher order than the N + 1

accuracy of the polynomial interpolation. (The actual situation is more involved, see finite element

textbooks on variational crimes. Under-integration of geometry can give rise to similar “aliasing”

problems as inexactly captured nonlinear terms. Often, aliasing errors from nonlinear terms are the

more important source of error as compared to geometry aliasing.)

For Nc,1D = N + 1 = 4, the evaluation of the integrals involves the following nodes:

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

node positions •
Gauss node positions ?

For computing the integrals, we need to evaluate all the Lagrangian polynomials in the quadrature

points marked by ?. Let us collect the evaluation of the basis functions in the quadrature points in a

matrix N ∈ RNp×Nc :

Niq = `i(rq).

Illustration for bilinear functions N = 1 in 2D:

N =


0.62 0.17 0.17 0.045

0.17 0.62 0.045 0.17

0.17 0.045 0.62 0.17

0.045 0.17 0.17 0.62



2 Basic DG scheme 5

With this matrix, the mass matrix is given by the following product of matrices:

Mk = NWkN T ,

where the matrix

Wk =

|J
k(r1)|w1 0 . . .

0 |Jk(r2)|w2 . . .
...

...
. . .


collects the quadrature weights and Jacobian determinants on all quadrature points on the diagonal.

2.2 Evaluation of advection term

For the advection term, we do not want to compute the matrix explicitly. Rather, we want to directly

evaluate the integral for a given function ukh(x, t). Going through all test functions, we obtain a vector

s = (s1, s2, . . .)
T with the following entries:

sj =

∫
Dk

∇`kj (x) · f(ukh) dx

Again, we transform the integral to the reference element. The gradient of `kj is given by the product

of the transpose of the inverse Jacobian matrix,
(
Jk
)−T

, and the gradient on the reference element.

This gives the following integral:

sj =

∫ 1

−1

∫ 1

−1

((
Jk
)−T

(r)∇r`j(r)

)T

f(ukh(r))|Jk| drds.

As before, we approximate the integral by quadrature. This results in the formula

sj ≈
Nc∑
q=1

((
Jk
)−T

(rq)∇r`j(rq)

)T

f(ukh(rq))|Jk|wq.

For the evaluation of f(ukh), we first evaluate ukh in all quadrature points r1, r2, In vector notation,

this is given by the operation:

uk
q =


ukh(r1)

ukh(r2)

ukh(r3)
...

 = N Tuk,

where uk denotes the values of the DG-FEM solution ukh in the element nodes. In the quadrature

points, we can then evaluate the flux f pointwise. Since the flux f = (f1, f2) maps a scalar value

u onto a vector of two components, we will denote by fk the vector of length 2Nc containing both

components of f , with the first Nc entries belonging to the first component f1 and the second Nc

entries to the second component f2.

Next, we represent the gradient operation in terms of a matrix. To this end, we denote by D the

derivative of the basis functions `j on the reference element with respect to r and s:

D =
[
Dr Ds

]
∈ RNp×2Nc

with the matrices of partial derivatives defined by

Dr,iq =
∂`i(rq, sq)

∂r

2 Basic DG scheme 6

and

Ds,iq =
∂`i(rq, sq)

∂s

Taking all the above steps together, we obtain the following formula for computing the evaluation of

the elemental advection vector:

sk = DX kfk,

where the matrix X k contains the product of the inverse Jacobian matrix of the transformation (Jk)−1,

the determinant of the Jacobian matrix |Jk(rq)|, and the quadrature weight. Due to the particular

way we order the derivative matrix D and the flux fk, the structure of X k is a block matrix of diagonal

matrices,

X k =

[
X k
11 X k

12

X k
21 X k

22

]
=

diag
((
Jk
)−1
11
wq|Jk|

)
q=1:Nc

diag
((
Jk
)−1
12
wq|Jk|

)
q=1:Nc

diag
((
Jk
)−1
21
wq|Jk|

)
q=1:Nc

diag
((
Jk
)−1
22
wq|Jk|

)
q=1:Nc

 ,
where each matrix Xk

ab is of size Nc ×Nc and diagonal with the respective quadrature point data as

entry.

2.2.1 Evaluation of face integrals

For the face computations, we need to evaluate the integrals over products of `kj and the DG-FEM

solution ukh from both sides. We proceed in analogy to the cell term by transforming the integral to

the reference element and extracting the values on the faces. Since face terms involve in general data

from both sides of the face, we do not proceed element by element but rather pass through all the

faces of the computational mesh. For interior faces, we proceed according to the following steps:

Loop over all interior faces e:

1. Identify the indices k− and k+ of the two elements adjacent to face e

2. Compute the Jacobian transformation Jk− and Jk+ on the face quadrature points (in 2D: the

line over the face) for the left and right element. The local face numbers are denoted by ê− and

ê+ (both being a number between 1 and 4).

3. Evaluate uk
−

h and uk
+

h on the face quadrature points by multiplication with appropriate matrices

N T
e− andN T

e+ that contain the values of theNp shape functions evaluated in the quadrature points

of the respective faces.

4. On each quadrature point:

(a) Compute the normal vector n̂− on element k− by the following procedure:

• Transform unit tangential vector t(ê−) to real space:

t− =

[
t−x
t−y

]
= Jk−t(ê−)

• Compute direction of normal vector by the vector orthogonal to t−,

ñ− =

[
−t−y
t−x

]

2 Basic DG scheme 7

• Normalize:

n̂− =
ñ−

|ñ−|
In 3D, a similar procedure is applied but one transforms the two tangential vectors from

the unit surface and then takes the cross product for finding ñ− = t− × t−2 .

(b) Evaluate the numerical flux f∗ from u− and u+ on the quadrature point rq.

(c) Multiply f∗ by the normal vector n̂−. Write this result into a vector a− for the element

k−. The vector on the outer side, a+ for the element k+, is given by −a− (negative sign

because the normal vector points into the opposite direction for k+).

(d) Multiply by the quadrature weight and the determinant of the Jacobian matrix for the face,

i.e., the norm of the transformed tangential vector |t−|.

5. Multiply the resulting vectors a± by Ne− and Ne+ and subtract the results from the value for the

right hand side in index k− and k+, respectively. The negative sign is because the face term has

negative sign in eq. (3). The multiplication by the matrices Ne− and Ne+ , respectively, performs

the summation over all quadrature points and tests by all test functions on the elements k− and

k+.

A similar procedure is applied for the boundary faces:

Loop over all boundary faces e:

1. Identify the index k− elements adjacent to face e

2. Compute the Jacobian transformation Jk− on the face quadrature points (in 2D: the line over

the face). The local face number is denoted by ê− (a number between 1 and 4 in 2D; in 3D,

there are 6 faces).

3. Evaluate uk
−

h on the face quadrature points by multiplication with the matrix N T
e− .

4. On each quadrature point:

(a) Compute the normal vector n̂− on element k− by the following procedure:

• Transform unit tangential vector t(ê−) to real space:

t− =

[
t−x
t−y

]
= Jk−t(ê−)

• Compute direction of normal vector by the vector orthogonal to t−,

ñ− =

[
−t−y
t−x

]
• Normalize:

n̂− =
ñ−

|ñ−|
(b) Evaluate the numerical flux f∗ from u− and possible boundary values g.

(c) Multiply f∗ by the normal vector n̂−. Write this result into the vector a− for the element

k−.

(d) Multiply by the quadrature weight and the determinant of the Jacobian matrix for the face

|t−|.

5. Multiply the resulting vectors by Ne− and subtract the results from the value for the right hand

side in index k−. The negative sign is because the face term has negative sign in eq. (3).

3 Fast evaluation of integrals 8

3 Fast evaluation of integrals

Both the evaluation of the advection term and the face terms involve essentially a sequence of three

operations:

• Evaluation of shape functions or their derivatives in all quadrature points (reference cell deriva-

tives)

• Operations on quadrature points, including flux evaluation, application of geometry, etc.

• Multiplication for all test functions (on reference cell) and summation over quadrature points

When considering the numerical cost, we realize that the first and third operation both have leading

order cost NpNc, which for the case Np = Nc simply evaluates to N2
p . The operations on quadrature

points are much cheaper in comparison with costs O(Nc) (but the constant is usually a bit larger).

To see why this is a problem, consider the work for evaluating the shape functions on all quadrature

points in 2D and 3D:

2D 3D

N Np N2
p Np N2

p

1 4 16 8 64

2 9 81 27 729

3 16 256 64 4096

4 25 625 125 15625

5 36 1296 216 46656

In order to make the method competitive, we need to improve on the evaluation of the shape functions

on quadrature points, in particular for 3D.

The idea to make this operation faster is so-called tensorial evaluation. The idea is to exploit that

both the basis functions `i(rq) = `i1(rq1)`i2(sq2) form a tensor product and we want to evaluate the

shape functions on a tensor product quadrature.

Let us consider the fast evaluation of basis functions in the quadrature points, i.e., the operation

N Tuk.

Matrix N is constructed as follows:

Niq = `2Di (rq) = `1Di1 (rq1)`1Di2 (sq2).

By construction of the basis functions and the quadrature formula, the evaluation along the r-direction

is the same in all layers of the y-direction: No matter what the coordinate sq2 is, the first part `1Di (rq1)

is always the same.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Evaluation of `i1 at s = −1
r

s

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Evaluation of `i1 at s = 0

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Evaluation of `i1 at s = 0.5

3 Fast evaluation of integrals 9

In matrix notation, this construction manifests itself in form of a tensor product matrix,

N = N 1D
2 ⊗N 1D

1 ,

where the matrices N 1D
1 and N 1D

2 collect the evaluation of the 1D basis functions in r and s directions,

respectively:

N 1D
1 = `1Di1 (rq1),

N 1D
2 = `1Di2 (sq2).

The symbol ⊗ denotes the tensor product of matrices, also called Kronecker product. Since we have

the same basis functions in r and s direction and the same quadrature points, the two matrices are

the same,

N 1D
1 = N 1D

2 .

In the above example for Q3 basis functions (cubic polynomials on a tensor grid), the 1D matrices are

4× 4. The tensor product N 1D ⊗N 1D is a 16× 16 matrix. In a tensor product, the dimension of the

final matrix is the product of the dimensions in the two involved matrices.

In three space dimensions, the shape matrix N is constructed by a tensor product of three matrices,

N 3D = N 1D ⊗N 1D ⊗N 1D,

and the final dimension for polynomial degree N is (N + 1)3× (N + 1)3 (e.g. 64×64 for Q3 elements).

3.1 Matrix-vector product with Kronecker matrices

Let us consider the Kronecker product of two matrices A ∈ Rm×n and B ∈ Rp×q in a more abstract

way. We associate matrix A with values in the first index direction i1 (r direction) and matrix B with

shape values in the second index direction i2 (s direction).

The Kronecker product is written as

B ⊗A =

b11A · · · b1qA
...

. . .
...

bp1A · · · bpqA

 (6)

or, more explicitly,

B ⊗A =



b11a11 b11a12 · · · b11a1n · · · · · · b1qa11 b1qa12 · · · b1qa1n
b11a21 b11a22 · · · b11a2n · · · · · · b1qa21 b1qa22 · · · b1qa2n

...
...

. . .
...

...
...

. . .
...

b11am1 b11am2 · · · b11amn · · · · · · b1qam1 b1qam2 · · · b1qamn

...
...

...
. . .

...
...

...
...

...
...

. . .
...

...
...

bp1a11 bp1a12 · · · bp1a1n · · · · · · bpqa11 bpqa12 · · · bpqa1n
bp1a21 bp1a22 · · · bp1a2n · · · · · · bpqa21 bpqa22 · · · bpqa2n

...
...

. . .
...

...
...

. . .
...

bp1am1 bp1am2 · · · bp1amn · · · · · · bpqam1 bpqam2 · · · bpqamn


Now we compute the product z ∈ Rmp of B ⊗A with a vector y ∈ Rnq.

z = (B ⊗A)y,

3 Fast evaluation of integrals 10

Assume that y is sorted with the indices i1 associated to matrix A running fastest, i.e.,

y =
[
y1 y2 . . . yn y(q−1)n+1 y(q−1)n+2 . . . yqn

]T
.

By looking at the matrix in (6), we observe a repeating structure. In the first column of the block

matrix, the matrix A is repeated p times for each of the coefficients b11 until bp1 of the matrix B. The

goal of the following is to transform the multiplication by B ⊗A into a series of multiplications by A
and B.

Multiplication by A. To use the repeated appearance of A, we factor out the common coefficient

b11 from the first matrix block and form a product with A on the entries y(1) = [y1, y2, . . . , yn]T .

We write

w(1) =


w1

w2

...

wm

 =


a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...

am1 am2 · · · amn



y1
y2
...

yn

 = Ay(1)

Similarly, we can form a vector y(2) = [yn+1, yn+2, . . . y2n]T and form the product

w(2) = Ay(2).

This way, we proceed with until w(q) = Ay(q).

By this algorithm, we have formed a vector

w =

[(
w(1)

)T
,
(
w(2)

)T
, . . . ,

(
w(q)

)T]T
∈ Rmq,

which involved q multiplications by the matrix A.

Multiplication by B. In the second step, we need to perform similar operations using the matrix B
that had been factored out. In terms of the matrix (6), we have multiplied and summed within

the matrix A. To perform multiplication by the entries of B and the final summation, consider

the first entry of the result vector, z1:

z1 =

q∑
i=1

b1iw
(i)
1 .

Similarly, we obtain

z2 =

q∑
i=1

b1iw
(i)
2 ,

and so on until

zm =

q∑
i=1

b1iw
(i)
m .

For the next entry zm+1, the sum is again similar as for z1 but using the next series of coefficients

b2i. Taken together, we obtain the vector z when going through the rows one by one.

This operation corresponds to m multiplications by the matrix B on the m vectors

[w
(1)
1 , w

(2)
1 , . . . , w

(q)
1]T ,

[w
(1)
2 , w

(2)
2 , . . . , w

(q)
2]T ,

...

[w(1)
m , w(2)

m , . . . , w(q)
m]T .

3 Fast evaluation of integrals 11

In the second step representing multiplication by B, the summation does not run over direct neighbors

in the temporary vector w but rather jumps over m entries. If we collect w in a matrix W by putting

q columns consisting of m entries next to each other,

W =


w

(1)
1 w

(2)
1 · · · w

(q)
1

w
(1)
2 w

(2)
2 · · · w

(q)
2

...
...

. . .
...

w
(1)
m w

(2)
m · · · w

(q)
m


then the second step is a matrix-matrix product

BWT .

Likewise, the first step to compute w from y is a matrix-matrix product, with the matrix Y formed

by filling the entries of y into q columns of length n:

W = AY.

Taken together, the computation of z from y is represented by the product of the three matrices

Z = AYBT , (7)

where multiplication by BT from the right is nothing else than computing the product BWT . The

columns of matrix Z are the respective entries z(i−1)m+1 to zim (column index i) of the result vector

z.

3.2 Benefits of the tensorized matrix-vector product

Let us look at the computational cost for the computation of AYBT instead of (B⊗A)y. For simplicity,

assume that the matrix dimensions are all the same, m = n = p = q. The original matrix-vector costs

m4 multiplications and m4 additions, the cost of multiplying a matrix of size m2 ×m2 by a vector.

The cost for the tensorized version is less:

• Multiplication AY: Matrix-matrix product of matrices of size m, i.e., m3 multiplications and

m3 additions

• Multiplication WBT : m3 multiplications and m3 additions

This algorithm reduces the cost from 2m4 arithmetic operations to 4m3 operations. If m is large

(i.e., higher polynomial degree), this results in a considerable saving. This evaluation concept is also

called sum factorization because it takes out common factors of the summation in the matrix-vector

products.

3.3 Visualization

Let us now find a graphical representation of the mechanisms of the tensorized product on the finite

element nodes for the Q3 elements. As we have seen above, the goal of the product N Tuk is to

evaluate the finite element function uh in all quadrature points by a sum of the basis functions times

the nodal values.

3 Fast evaluation of integrals 12

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

node positions •
Gauss point positions ?

The first step is the multiplication W =
(
N 1D

)T U . The multiplication
(
N 1D

)T
v represents the

evaluation of a one-dimensional function with node values v on the 1D quadrature nodes. We depict

this as follows:

v1 v2 v3 v4

• • • • ? ? ? ?(
N 1D

)T
v

vh(r1) vh(r2) vh(r3) vh(r4)

For the two-dimensional case, we operate in two steps. The first step is to compute the temporary

matrix W (i.e., the vectors w(i)). The order of summation in the product
(
N 1D

)T U is such that we

only perform operations in the r-direction. The operations performed by the matrix-matrix product

are visualized in red color in the plot below.

The second step in the tensorized matrix-vector product performs the multiplication along the second

dimension,

WN 1D

and is visualized in green color in the plot.

3 Fast evaluation of integrals 13

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

r

s

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

◦

(N 1D)T [u1 . . . u4]
T

(N 1D)T [u5 . . . u8]
T

(N 1D)T [u9 . . . u12]
T

(N 1D)T [u13 . . . u16]
T

W =
(
N 1D

)T U

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

?

w
(:
)

1
N

1
D

w
(:
)

2
N

1
D

w
(:
)

3
N

1
D

w
(:
)

4
N

1
D

WN 1D

(N 1D
⊗N 1D

) T
u

This graph illustrates that the algorithm changes the full coupling in the evaluation of the sum of all

node values distributed onto the quadrature points into two one-dimensional operations. The one-

dimensional operations only involve N + 1 operations at polynomial degree N and are thus cheaper

than coupling between all (N + 1)2 degrees of freedom and quadrature points.

3.4 Extension to three space dimensions

The ideas shown in the graph above extend straight-forwardly to three spatial dimensions. The

Kronecker productN 1D⊗N 1D⊗N 1D is not explicitly formed to give a matrix of size (N+1)3×(N+1)3,

but we rather apply a series of one-dimensional operations along the unit directions r, s, and t. A

one-dimensional operation involves (N + 1)2 operations, and we have to do this for a whole plane of

(N + 1)2 layers. For instance, the operation in r direction, has to be done for all node values (or

quadrature points) in all values of s and t.

The savings in computational costs are more significant in 3D as compared to 2D: Executing the

product
(
N 1D ⊗N 1D ⊗N 1D

)
uk involves 2(N + 1)6 operations for polynomial degree N , whereas the

tensorized evaluation involves three computations with costs

(N + 1)2︸ ︷︷ ︸
#layers

2(N + 1)2︸ ︷︷ ︸
operations in 1D

each. Thus, the total cost is

6(N + 1)4.

4 Details of computational cost 14

3.5 Using sum factorization for gradient operations and integration

In the above demonstration, we considered the evaluation of the DG-FEM function uh in the quadra-

ture points, given the node values uk. Of course, this concept can also be applied for evaluating the

first derivative with respect to the reference coordinates r = (r, s, t), i.e. ∇ru
h. In matrix form, we

represent this by the matrix

DTuk with D =
[
Dr Ds

]
.

Each of the two matrices Dr and Ds is of similar shape as N . If we take the partial derivatives with

respect to r, this corresponds to derivatives with respect to the 1D basis function along r-direction

but keeping the values of the 1D basis function along the s-direction, i.e.,

Dr = N 1D ⊗D1D,

Ds = D1D ⊗N 1D.

Thus, we can again apply the idea of the tensor framework for the multiplication of uk with DT
r and

DT
s , respectively.

Likewise, we can perform the integration step using sum factorization:

• Testing an equation by the test function values `i and performing summation over quadrature

points corresponds to multiplication of a vector v in quadrature points with the matrix N . This

is realized by the same one-dimensional operations as above but with transposed matrices N 1D

instead of
(
N 1D

)T
.

• An equation involving the gradient of test functions, ∇`i, is represented by the matrix-vector

product D(X kfk), where X k collects the factored-out Jacobian, Jacobian determinant, and

quadrature weight, and fk is the integrand (e.g. flux on quadrature points). This is treated by

applying sum factorization separately on the r and s components of X kfk and finally adding

the two contributions.

For face integrals, the same techniques can be applied. For nodal basis functions, the evaluation of

functions on the faces needs to first select the correct indices out of the nodal vector (e.g. the left

or right end point in 1D). Secondly, the node values on the face need to be evaluated in the face

quadrature points. This operation is again of tensor form, with the dimension reduced by one as

compared to cell integrals. Therefore, the cost for face integrals is O((N +1)2) in 2D and O((N +1)3)

in 3D. If shape functions are not nodal (or if the node points are not on the element boundary), one

needs to perform interpolation to the boundary by a weighted sum in the direction normal to the face

using an evaluation point on the face. This is a 1D operation similar to the ones considered above.

4 Details of computational cost

As we have seen above, the sum factorization step considerably reduces the computational effort to

change from node values to values in quadrature points and the other way around. Let us re-consider

the table from the beginning of this subsection and list the number of arithmetic operations for the

operation N Tuk for the sum factorization evaluation as compared to the naive implementation:

4 Details of computational cost 15

2D 3D

N Np naive sum fact. Np naive sum fact.

1 4 32 32 8 128 96

2 9 162 108 27 1458 486

3 16 512 256 64 8192 1536

4 25 1250 500 125 31 250 3750

5 36 2592 864 216 93 312 7776

We see that the improvement in operations is about one order of magnitude for N = 4 in 3D.

Next, we analyze the cost per degree of freedom for the evaluation routines based on sum factorization

for the advection equation with local integrals∫
Dk

[
∂ukh
∂t

`kj (x)− fk
h · ∇`kj (x)

]
dx = −

∫
∂Dk

n̂ · f∗`kj (x)dx.

We display the work done per element for the 2D case (quadrilateral elements) on the left and the

3D case (hexahedral elements) on the right. We separately display the work for the volume integral

and the face integrals. In order to make the work comparable, we assign the complete work on two

faces (from the − and the + side) to one element and count 2 faces per element in 2D and 3 faces per

element in 3D. This setup disregards the boundaries of the computational domain.

 100

 1000

 10000

 100000

 0 2 4 6 8 10 12 14 16

2
D

:
o
p
er

at
io

n
s

p
er

 e
le

m
en

t

Polynomial degree N

 volume integrals
 face integrals
 total

 100

 1000

 10000

 100000

 1x10
6

 1x10
7

 0 2 4 6 8 10 12 14 16

3
D

:
o
p
er

at
io

n
s

p
er

 e
le

m
en

t

Polynomial degree N

 volume integrals
 face integrals
 total

We observe that in 3D, the computation of the face integrals is more expensive than the volume

integrals for polynomial degrees one and two. This effect can be more easily seen when listing the

work per degree of freedom rather than per element:

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 2 4 6 8 10 12 14 16

2
D

:
o
p
er

at
io

n
s

p
er

 d
eg

re
e

o
f

fr
ee

d
o
m

Polynomial degree N

 volume integrals
 face integrals
 total

 0

 50

 100

 150

 200

 250

 300

 0 2 4 6 8 10 12 14 16

3
D

:
o
p
er

at
io

n
s

p
er

 d
eg

re
e

o
f

fr
ee

d
o
m

Polynomial degree N

 volume integrals
 face integrals
 total

5 Non-conforming elements and adativity 16

Since the surface-to-volume ratio decreases for higher order elements, the work for face integration

decreases as the polynomial degree increases. Thus, the operations for a quadratic element appear

similar as for a linear one, computed relative to the number of degrees of freedom. For very large

polynomial degrees, the asymptotic behavior with work proportional to the polynomial degree becomes

apparent.

Finally, we want to show the computational time per degree of freedom on a high-performance imple-

mentation of the sum-factorization techniques. The data has been measured with the implementation

from the deal.II finite element library (www.dealii.org) when running the integration on all six

cores of an Intel Xeon E1650 (Sandy Bridge) CPU:

0.0e+00

1.0e-08

2.0e-08

3.0e-08

4.0e-08

5.0e-08

 0 2 4 6 8 10 12 14

2
D

:
ti

m
e

p
er

 d
eg

re
e

o
f

fr
ee

d
o
m

Polynomial degree N

 volume integrals
 face integrals
 total

0.0e+00

1.0e-08

2.0e-08

3.0e-08

4.0e-08

5.0e-08

 0 2 4 6 8 10 12 14

3
D

:
ti

m
e

p
er

 d
eg

re
e

o
f

fr
ee

d
o
m

Polynomial degree N

 volume integrals
 face integrals
 total

Conclusions

• The time per degree of freedom is almost constant over a wide range of polynomial degrees

• Can select as high polynomial degree as possible (mesh restrictions, variable coefficients, maybe

stabilization character of face jumps)

• Face integration dominates at low degree, element integration at high degree

5 Non-conforming elements and adativity

A desirable feature of approximations to partial differential equations is the ability to concentrate the

work, i.e., a fine mesh, to the most interesting regions. In mesh-based methods, this can be achieved

by adaptive mesh refinement.

On quadrilateral elements, the most common strategy for mesh refinement is structured refinement

by subdivision of elements. Structured refinement is typically organized by a mesh stored in a tree

concept. Each element represents a leaf of the tree. If an element is refined, four children (or eight

in 3D) are created independently of the other elements. This way, some elements can be more refined

than others. The number of refinement steps from the base mesh is called the level of the cell.

A suitable criterion for refinement can be the following:

• Elements with large gradients in the solution

• Elements with large jumps of the solution over faces

• A posteriori error estimation: Define a functional of the error (e.g. drag coefficient defined as an

integral of the solution over some surface), solve an adjoint problem, weight residuals of equation

(dual weighted residual techniques, DWR)

5 Non-conforming elements and adativity 17

As before, we work with an algorithm that performs four blocks of operations:

• Volume (element) integrals – as usual

• Boundary integrals, including imposition of boundary conditions – as usual

• Integrals on faces between elements

– Face integrals between elements of the same level of refinement (no hanging nodes) – as

usual

– Face integrals between elements of different refinement level – adjust!

• Apply inverse mass matrix – as usual

For the face integration on faces between different refinement level, we apply the following strategy

on a mesh where we have a 2:1 mesh ratio, i.e., the difference between refinement levels is at most 1:

• Perform integration from the refined side, where u− denotes the solution on the finer element

and u+ the solution on the coarser element

– u− is evaluated on the quadrature points of the face as usual with N T
e−

– For u+, we need to evaluate on a “subface” relative to the coarse element, i.e., either [−1, 0]

or [0, 1] in terms of unit coordinates:

Case 1 [−1, 0]: Evaluate on reference points r̃q = 1
2rq −

1
2 with matrix (N l

e+)T

Case 2 [0, 1]: Evaluate on reference points r̃q = 1
2rq + 1

2 with matrix (N r
e+)T

– From both sides, the selection of the boundary points involved is the same as in the uniform

case (sketch)

6 Check yourself 18

– Go through quadrature points and evaluate numerical flux from u− and u+ in the quadra-

ture points of the refined edge as usual

– Multiply by Ne− for testing on e−, by N l/r
e+

In 3D, the algorithm proceeds similarly. There are four different cases to be treated. In terms of

the tensorized evaluation, it suffices to combine the one-dimensional matrices N l/r
e+

along the r and s

directions on the face.

DG-FEM is extensible to other non-conforming cases than the 2:1 mesh balance considered above,

including non-matching grids where the vertices can be placed in arbitrary locations. This is easier

than for continuous finite elements:

• In continuous finite elements, the 2:1 mesh balance allows to perform consistent computations

relatively easily (need to “constrain” indices from the refined side such that only polynomials

from the coarse side are possible – algebraic operation).

• For non-matching meshes, finding restrictions on the solution spaces must be done through

additional variables with so-called mortar methods (idea: perform integration on one side with

values from the other side, which introduces coupling matrices).

The only restriction for the basic variant of DG-FEM are consistent interfaces:

There must be a unique interface between the two meshes without overlapping regions or gaps in order

to integrate on the same domain. Otherwise:

• Ignore gaps/overlaps in face integrals (inconsistent!)

• Use high order boundary mappings (approximate boundary by high order basis functions) to

reduce gaps

• Evaluate shape functions of one element exactly on the surface of the neighbor by local interpo-

lation/extrapolation to the real locations (expensive to find the unit coordinates)

6 Check yourself

• How are the nodes for quadrilaterals and hexahedra distributed?

• DG-FEM methods for quadrilaterals are predominantly implemented with quadrature, whereas

DG-FEM for triangles and tetrahedra often use pre-computed matrices on the reference element

and factored-out coefficients and geometry. Explain the reason for this difference.

• Give an outline of the computation of the advection and face terms in DG-FEM with quadrature.

• What is the idea of tensorial techniques for fast evaluation of integrals on quadrilaterals? Explain

the main steps in the algorithm for evaluating the spatial derivative ∇r of shape functions.

• In which case is the advantage of the tensorial evaluation over the naive evaluation (or matrix-

based evaluation) larger, for N = 1 or for N = 4? Give an estimation of the difference in

cost.

• Explain the procedure for computing face integrals on meshes with hanging nodes. What mod-

ifications compared to the conforming case (grid without hanging nodes) are necessary?

	DG-FEM discretization
	Basic DG scheme
	Computation of element mass matrix
	Evaluation of advection term
	Evaluation of face integrals

	Fast evaluation of integrals
	Matrix-vector product with Kronecker matrices
	Benefits of the tensorized matrix-vector product
	Visualization
	Extension to three space dimensions
	Using sum factorization for gradient operations and integration

	Details of computational cost
	Non-conforming elements and adativity
	Check yourself

